Linux SNMP アルゴリズムと機能モジュール

Linux SNMP アルゴリズムと機能モジュール

Linux SNMP を十分に学習したい場合は、いくつかのモジュールに精通している必要があります。そこで今日は、Linux SNMP プロトコルの関連仕様を紹介します。次に、主にその MIB と SMI の意味について説明します。そして、そこに含まれるアルゴリズムの一部。

Linux SNMP はプロトコルに依存しないように設計されているため、IP、IPX、AppleTalk、OSI、およびその他のトランスポート プロトコルで使用できます。

Linux SNMP は、ネットワーク上のデバイスからネットワーク管理情報を収集する方法を提供するプロトコルと仕様のセットです。 Linux SNMP は、デバイスがネットワーク管理ワークステーションに問題やエラーを報告する方法も提供します。

MIB: 管理情報ベース

SMI: 管理情報の構造と識別

Linux SNMP アルゴリズム

管理対象デバイスからデータを収集する方法は 2 つあります。1 つはポーリングのみの方法、もう 1 つは割り込みベースの方法です。

ポーリングのみの方法を使用する場合、ネットワーク管理ワークステーションが常に制御します。この方法の欠点は、情報のリアルタイム性、特にエラーのリアルタイム性です。どのくらいの頻度でポーリングしますか? また、どのような順序でデバイスをポーリングしますか?

ポーリング間隔が短すぎると、不要なトラフィックが大量に生成されます。ポーリング間隔が長すぎて、ポーリングが順序どおりに行われない場合、重大な壊滅的なイベントに関する通知が遅れてしまいます。これは、プロアクティブなネットワーク管理のための Linux SNMP の目的に反します。

異常なイベントが発生した場合、割り込みベースの方法では、ネットワーク管理ワークステーションにすぐに通知できます (デバイスがクラッシュしておらず、管理対象デバイスと管理ワークステーションの間に利用可能な通信パスがまだあると仮定)。

ただし、このアプローチには欠点がないわけではありません。まず、エラーやトラップを生成するにはシステム リソースが必要です。トラップが大量の情報を転送する必要がある場合、管理対象デバイスはトラップを生成するためにより多くの時間とシステム リソースを消費する必要があり、その結果、その主な機能に影響が及ぶ可能性があります (ネットワーク管理の原則 2 に違反します)。

さらに、同じ種類のトラップイベントが連続して複数発生すると、同じ情報によって大量のネットワーク帯域幅が占有される可能性があります(ネットワーク管理の原則 1 に違反します)。トラップがネットワークの輻輳に関連している場合は、状況が特に悪化する可能性があります。

この欠点を克服する 1 つの方法は、管理対象デバイスに対して問題を報告するタイミングに関するしきい値を設定することです。残念ながら、このアプローチは、トラップを生成するかどうかを決定するためにデバイスがより多くの時間とシステム リソースを消費する必要があるため、ネットワーク管理の原則 2 に再び違反する可能性があります。

結果として、上記の 2 つの方法 (トラップ指向ポーリング) を組み合わせることが、Linux SNMP を使用してネットワーク管理を実行する最も効果的な方法であると考えられます。一般的に、ネットワーク管理ワークステーションは、管理対象デバイス内のエージェントをポーリングしてデータを収集し、そのデータをコンソールに数値またはグラフで表示します。これにより、ネットワーク管理者はデバイスとネットワーク トラフィックを分析および管理できます。

管理対象デバイス内のエージェントは、事前に設定されたしきい値を超える度合いなどのエラー状態をいつでもネットワーク管理ワークステーションに報告できます。エージェントは、管理ワークステーションがこれらのエラー状態をポーリングして報告するまで待つ必要はありません。これらのエラー状態は Linux SNMP トラップと呼ばれます。

<<:  パスワードを解読する方法: 暗号ハッシュアルゴリズムの識別

>>:  LEACHプロトコルのアルゴリズムと特徴

ブログ    

推薦する

階乗関連のアルゴリズムとその C++ 実装

階乗とは、必要な数値が得られるまで 1 × 2 × 3 × 4 を掛け合わせることを意味します。 C...

AIの最高峰:自然言語処理

近年、世界中でますます多くの政府や企業組織が人工知能の経済的、戦略的重要性を徐々に認識し、国家戦略や...

ショッピングをもっと便利に:Mogujie ビジュアル検索テクノロジーアーキテクチャの実践

[51CTO.com からのオリジナル記事] 周知のとおり、画像検索はコンピューター ビジョン分野に...

ドローンのパフォーマンスはどんどん標準化されつつありますが、この4つの点はまだ改善が必要です。

近年、飛行制御、ナビゲーション、通信などの技術が継続的に進歩し、私たちの生産や生活におけるドローンの...

アイソレーションフォレスト: ビッグデータにおける最高の異常検出アルゴリズム

Isolation Forest または「iForest」は、わずかなパラメータのみで外れ値を検出で...

...

AI が病院の屋内資産追跡の課題を克服する方法

IoT アプリケーションでは、AI はデータ スタックの「最上位」で使用されることが多く、複数のソー...

データベースセキュリティとテーブル検索攻撃における MD5 暗号化アルゴリズムの応用

MD5 は最も広く使用されているハッシュ アルゴリズムの 1 つです。1992 年に MIT の R...

...

...

Pythonディープラーニングフレームワークの比較の詳細な分析

PyTorch から Mxnet まで、これらの Python ディープラーニング フレームワークを...

ロボット犬をDIYするにはどれくらいの費用がかかりますか?価格は900ドルと安く、スタンフォード大学が開発し、コードはオープンソースです

たった 900 ドルで四足ロボット犬を DIY できる?スタンフォード学生ロボットクラブの新メンバー...

北京大学やテンセントなどが言語を使ってマルチモーダル情報を整合させるLanguageBindを提案し、複数のランキングを更新した。

現代社会では、情報の伝達やコミュニケーションはもはや単一のモードに限定されなくなりました。私たちは、...

AIが安全な生産のインテリジェントな監視を実現する方法

生産における安全は社会発展の永遠のテーマであり、すべての仕事の本質です。工業製造企業の場合、事業継続...