脆弱なニューラル ネットワーク: カリフォルニア大学バークレー校が敵対的サンプル生成のメカニズムを説明します。

脆弱なニューラル ネットワーク: カリフォルニア大学バークレー校が敵対的サンプル生成のメカニズムを説明します。

ニューラル ネットワークを「騙す」ために使用される敵対的サンプルは、コンピューター ビジョンと機械学習における注目の研究トピックです。敵対的サンプルを理解することによってのみ、安定した機械学習アルゴリズムを構築するためのアイデアを見つけることができます。この記事では、カリフォルニア大学バークレー校の研究者が敵対的サンプルを作成する 2 つの方法を実演し、その背後にある原理を説明しました。

ニューラルネットワークによる暗殺 – クレイジーに聞こえますか?いつか、これが実際に起こるかもしれないが、それはあなたが想像するような形ではないだろう。どうやら、ニューラル ネットワークはドローンを飛行させたり、その他の大量破壊兵器を操作したりするように訓練できるようです。しかし、無害な(そして現在利用可能な)ネットワーク、たとえば自動車の運転に使用されるネットワークであっても、自動車所有者の敵になる可能性があります。これは、ニューラル ネットワークが敵対的サンプルと呼ばれる攻撃に対して非常に脆弱であるためです。

ニューラルネットワークでは、ネットワークが誤った値を出力する原因となる入力は敵対的サンプルと呼ばれます。これは例によって最もよく説明されます。まずは左の写真から始めましょう。いくつかのニューラル ネットワークでは、この画像がパンダであると考えられる信頼度は 57.7% であり、パンダ カテゴリとして分類される信頼度はすべてのカテゴリの中で最も高いため、ネットワークは「画像にはパンダが含まれている」という結論に達します。ただし、慎重に作成されたノイズをごく少量追加すると、次のような画像 (右) が得られます。人間にとっては、左側の画像とほとんど同じに見えますが、ネットワークは 99.3% の信頼度で、これが「テナガザル」として分類されると考えています。これは本当にクレイジーだ!

上記の画像は、Goodfellow ら著「Explaining and Harnessing Adversarial Examples」からの引用です。

では、敵対的サンプルはどのようにして暗殺を実行するのでしょうか?一時停止の標識を敵対的サンプル、つまり人間は一時停止の標識だとすぐに認識できるが、ニューラル ネットワークは認識できないサンプルに置き換えることを想像してください。さて、この標識を交通量の多い交差点に設置するとします。自動運転車が交差点に近づくと、搭載されているニューラルネットワークが一時停止標識を認識できずに運転を続け、乗客が死亡する可能性がある(理論上)。

これは、敵対的事例がどのように害を及ぼすために使用されるかを示す、複雑でややセンセーショナルな多くの例のうちの 1 つにすぎません。たとえば、iPhone Xの「Face ID」ロック解除機能は、顔認識にニューラルネットワークに依存しているため、敵対的攻撃に対して脆弱です。敵対的な画像を作成することで、Face ID セキュリティ機能を回避することができます。他の生体認証セキュリティシステムも危険にさらされるでしょう。敵対的サンプルの使用により、違法または不適切なコンテンツがニューラルネットワークベースのコンテンツフィルターを回避する可能性があります。これらの敵対的サンプルの存在は、ディープラーニング モデルを含むシステムが実際には極めて高いセキュリティ リスクを抱えていることを意味します。

敵対的サンプルを理解するには、それをニューラル ネットワークに対する「幻覚」と考えることができます。幻覚が人間の脳を騙すのと同じように、敵対的事例もニューラル ネットワークを騙すことができます。

上記のパンダ敵対的サンプルは、ターゲットを絞った例です。慎重に作成された少量のノイズが画像に追加され、ニューラル ネットワークが画像を誤分類する原因となります。しかし、人間にとってはその画像は以前と同じように見えます。ニューラル ネットワークを騙す入力を単に見つけようとする非ターゲットの例もあります。人間にとって、この入力はホワイトノイズのように見えるかもしれません。ただし、人間に似た入力を見つけることに制約がないため、この問題ははるかに簡単です。

ほぼすべてのニューラル ネットワークで敵対的サンプルを見つけることができます。いわゆる「超人的な」能力を備えた最先端のモデルでさえ、この問題に多少悩まされています。実際、敵対的サンプルの作成は非常に簡単です。この記事では、その方法を説明します。独自の敵対的サンプルを生成するために必要なすべてのコードと資料は、この github にあります: https://github.com/dangeng/Simple_Adversarial_Examples

上の図は敵対的サンプルの効果を示している

MNIST における敵対的サンプル

このセクションのコードは、次のリンクにあります (ただし、この記事を読むためにコードをダウンロードする必要はありません)。https://github.com/dangeng/Simple_Adversarial_Examples

MNIST データセットでトレーニングされた通常のフィードフォワード ニューラル ネットワークを騙してみます。 MNIST は、次のような 28×28 ピクセルの手書き数字画像のデータセットです。

6つのMNIST画像を並べて表示

<<:  人工知能を活用して社会問題を解決する方法

>>:  ファーウェイ、次世代スマート製品戦略と新+AIシリーズ製品を発表

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

運輸省:2025年までに自動運転技術の産業化を推進

道路交通自動運転技術の開発と応用の促進に関する運輸省の指導意見:道路交通の自動運転技術の開発と応用を...

1780億のパラメータを持つこの言語モデルは、王者GPT-3に挑戦するためだけに作られたのでしょうか?

誰かがGPT-3の独占に挑戦しなければなりません! GPT-3 は発売以来、最大の AI 言語モデル...

...

...

人工知能の未来を説明する15の統計

[[206292]]人工知能は非常に人気があり、それに対して楽観的な人もいれば、悲観的な人もいます。...

OpenAIを去った偉人カパシ氏は「教え始めた」。おなじみのミニコードスタイルのまま、新しいプロジェクトが日々増えている。

偉大なカルパシー氏はOpenAIを辞任し、当初は1週間の休暇を取ると脅していた。写真しかし、瞬く間に...

...

私の国はAIや5Gを含む多くの技術で米国を上回っており、米国が私たちを絞め殺すことはますます困難になっています。

世界大国として、中国と米国は多くの分野、特に科学技術分野で競争している。中国は科学技術分野で比較的目...

3分で振り返る!2021年9月のロボット分野の重要な動向を概観

2021年9月に北京で開催された世界ロボットコンテストでは、さまざまな企業がロボット技術の研究開発に...

アルゴリズムのアルゴリズム: すべての機械学習アルゴリズムはニューラルネットワークとして表現できる

機械学習におけるすべての研究は、ニューラル ネットワークの作成とともに 1950 年代の初期の研究以...

人工知能が爆発的に進化しています。この「鉄の飯碗」を手に入れるための新しいガイドをぜひ保存してください!

近年の人工知能の発展スピードは驚異的で、あらゆる分野で専門的なAIが登場しています。上海では以前、無...

ついにアルゴリズムが「修正」されました!

[[427083]] 9月29日、中国サイバースペース管理局は他の8つの中央部門とともに、「インタ...

...

顔認識: 顔認識攻撃手法と偽装防止手法の種類

コンピュータサイエンスと電子技術の急速な発展により、顔認証は現在、市場シェアで指紋に次ぐ世界第2位の...