AIが指紋を偽造できる場合、生体認証は依然として安全ですか?

AIが指紋を偽造できる場合、生体認証は依然として安全ですか?

[[256506]]

「人工知能技術は、大量の指紋データを『原材料』として利用し、その構造的特徴や詳細な情報を学習し、一定のルールに従って再構成することで、非常にリアルな偽造データを生成することができる」と、人工知能業界のベテランである孫立斌氏は科技日報に語った。

最近、米国のニューヨーク大学とミシガン州立大学が発表した論文では、ディープラーニング技術が指紋認証のセキュリティシステムを弱める可能性について詳しく説明されている。

AIは指紋を偽造できます。指紋ロック解除は依然として安全ですか?

生成的敵対ネットワークは指紋を偽造できる

「指紋認証は指紋を識別して本人確認するプロセスです。指紋認証は広く使用されていますが、一定の欠点もあります。タッチベースの認証方法は環境に対する要求が高く、指の湿度と清潔さに対する要求がより厳しいため、指紋の摩耗によっても認証が困難になることがあります。生まれつき指紋がない人もいれば、指紋の特徴が少なく画像を形成することができない人もいます。指紋の痕跡が残りやすく、コピーされる可能性があり、偽造コストが低いことも無視できません。」Megviiテクノロジー研究所の研究員であるファン・ハオチアン氏は科技日報に語った。

論文では、研究者らがニューラルネットワークのデータを使用して基本ソフトウェアをトレーニングし、本物の指紋よりもさらに優れた画像を持つ説得力のある偽の指紋を作成したとしている。 「研究チームは、生成的敵対的ネットワークと呼ばれるニューラルネットワーク技術の変種を使用して指紋を偽造した」と、論文の著者の一人であり、ニューヨーク大学の准教授であるジュリアン・トギリウス氏は述べた。

「生成的敵対ネットワークは、現在非常に人気のあるディープラーニングアルゴリズムです。本質的には生成モデルです。敵対的トレーニングを通じて、データノイズを含むディープフェイク画像を作成できます。データの強化に使用できるほか、特定の認識システムを突破するためにも使用できます」とファン・ハオチアン氏は述べた。

孫立斌氏は、人工知能技術は人間の目とコンピュータの認識方法の違いを利用して、指紋画像に特定の隠れた属性を埋め込むこともできると説明した。肉眼では見えないが、コンピュータはこの情報を捉え、偽造指紋画像を使用して本人確認の目的を達成できる。さらに、多くのシステムには生体検知モジュールがないため、取得した画像が実際の人間のものであるかどうかを判断できません。この抜け穴により、偽造された指紋画像がシステム検証を通過できるようになります。

指紋、顔、虹彩認証はそれぞれ特徴がある

ファン・ハオチアン氏は、生体認証に関して、現在一般的なアプリケーションには指紋認識、顔認識、虹彩認識などが含まれると紹介した。

虹彩認証は現在、一部の高級スマートフォンの虹彩認証ロック解除に主に使用されています。指紋認証と比較して、虹彩認証技術は人間の虹彩の独特な特徴を利用して本人確認を行います。虹彩認証の精度は、さまざまな生体認証よりも高いです。しかし、他の生体認証技術と比較して、虹彩認証ハードウェアは高価で、認識プロセスには調整が必要であり、大規模に推進することは困難です。レンズによって画像の歪みが生じ、信頼性が低下する可能性があります。そのため、虹彩認識のための画像取得やパターンマッチングは比較的不便であり、大規模な商用利用を実現するには克服すべき技術的な困難がまだ多く残っています。

「顔認証は、コンピューター画像処理技術を利用して人物の顔から重要な特徴点を抽出し、確立された顔特徴テンプレートを使用して認証対象人物の特徴を比較分析し、分析結果に基づいて類似度値を与えます。この値を使用して、同一人物かどうかを判断できます。接触が必要な指紋や協力が必要な虹彩の認識特性と比較すると、顔認証は自動的にキャプチャして検証することができ、非協力的な認識はより便利で、適用可能なシナリオが多くあります。」とファン・ハオチアンは述べた。

マルチモーダル融合認識はより安全

ファン・ハオチアン氏は、顔認識のセキュリティを評価する際に無視できない2つの側面があると分析した。

「入手しやすいかどうか?これには、応用シーンの顔データとデータベースデータの入手が含まれます。単一のデータだけでは、認識と照合を完了するのに十分ではありません。現在、商用の顔認識応用シーンでは、データの収集、呼び出し、照合を含むすべてのリンクは、ユーザーの認識と同意を得て実行する必要があります。顔の生体認証サンプルのコアデータベースは、公安や中央銀行などのコア機関によって管理されており、一般の商用事業者が取得する権利を持つものではありません。」ファン・ハオチアン氏は、2つ目は、簡単に破られるかどうかだと述べた。これはアルゴリズムの強さをテストするだけでなく、より重要な攻撃への抵抗能力をテストします。

「全体的に、顔認証は現在、生体認証分野で最も安全な技術の一つです。もちろん、絶対確実というわけではありません。安全で大規模な顔認証を実現するには、技術、法律、規制、業界標準を徐々に改善していく必要があります」とファン・ハオチアン氏は語った。

孫立斌氏は、生体認証は急速に発展しており、異なるモダリティの生体認証にはそれぞれ独自の特徴があり、偽造防止機能も異なると考えています。義肢攻撃のリスクにさらに高いレベルで対抗したい場合は、歩行と顔の統合認識などのマルチモーダル融合認識方式を採用することで、データの偽造の困難性を大幅に高め、認識システムのセキュリティを向上させることができます。

<<:  20年間のAIベテランの告白

>>:  安全なパスワード保存の業界標準: bcrypt アルゴリズム

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

5Gは19の業界に浸透?これらの5つの分野はもっと注目に値する

2019年、「5G」は大いに期待されるテクノロジーの流行語となり、その人気は間違いなく人工知能に劣り...

2019 年の機械学習フレームワークの戦い: Tensorflow との競争は熾烈、進化する PyTorch はどこで勝利するのか?

[[278853]]ビッグデータダイジェスト制作出典: thegradient翻訳者: 張大毓如、...

子供でも理解できるHTTPS暗号化アルゴリズム

[[344331]]信じられないかもしれませんが、「key」という言葉の標準的な発音は[mì yuè...

2枚の写真でビデオを「計算」できる、Redditのネットユーザーに衝撃

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

速報、AI専門家のJing Kun氏がBaiduを退社! CIOの李英がXiaoduのCEOに就任

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

フィンテックとAI: 金融におけるAIの活用方法

フィンテックの人工知能と機械学習技術は、大規模なデータセットをリアルタイムで分析し、改善を図るのに役...

業界の証人、Pudu Roboticsが北京ケータリング調達展示会に初登場

4月21日から23日まで、北京市易創国際会議展示センターでもう一つのケータリング会議、すなわち202...

新しい人工筋肉、応用シナリオの範囲が極めて広い!マイクロロボット:非常に必要

人工筋肉は科学界では常に重要な研究テーマとなっています。理想的には、人工筋肉は医療分野で患者の健康回...

人工知能は厳しい規制の時代に入る

ChatGPTに代表されるLLM(Large Language Model)に基づく生成AIアプリケ...

ヒントエンジニアリング: LLM で必要なものを生成

翻訳者 |ブガッティレビュー | Chonglou生成AIモデルは、入力に基づいてコンテンツを生成す...

AIは人間の仕事を奪うが、これらの業界ではより多くの仕事も生み出すだろう

イーロン・マスク、ビル・ゲイツらは、人工知能(以下、AI)が「世界の終末」をもたらすだろうと国民に繰...

機械学習の仕組み - コード例

誰が生き残るかを予測するモデルをトレーニングします。 [注: ここでモデルを自分で構築するには、完全...

どのような Android の知識を学ぶ必要がありますか?ナレッジグラフ

コア分析コンテンツ初心者および中級の Android 開発者にとって、学ぶべき Android の理...

Google AIがチューリングテストに合格、ビッグモデルドクターが登場か? GPT-4は17人の医師を困惑させた奇妙な病気を診断した

人類に利益をもたらす AGI を開発する必要がある理由の 1 つ:妻は過去 5 年間、あらゆる種類の...