最近、世界最速のエンタープライズ レベルのグラフ分析プラットフォームである TigerGraph は、公式のオープン ソース TigerGraph GSQL グラフ データベース アルゴリズム ライブラリを発表し、3 つのカテゴリで 10 個のコア アルゴリズムをリリースしました。これらのアルゴリズム ライブラリを公開することで、ユーザーにはグラフ分析アルゴリズムのテンプレートとデモンストレーションが提供され、より幅広いシナリオでビジネス分析をよりシンプルかつ簡単にサポートできるようになります。 現在、ユーザーは github からアルゴリズム ライブラリをダウンロードして、TigerGraph のネイティブ並列グラフ データベースの高速クエリとアルゴリズム ライブラリの強力な分析機能を体験できます。 グラフデータベースのコアアルゴリズム グラフ データベース アルゴリズムは、グラフ、その頂点、およびそれらの関係のメトリックと機能を計算するために使用される一連の関数です。 グラフ内のエンティティ間の役割と関係を内部から明らかにすることができます。 TigerGraph GSQL グラフ アルゴリズム ライブラリには、一連の高性能 GSQL クエリが含まれているため、GSQL グラフ アルゴリズムは基本的に GSQL クエリになります。各アルゴリズムはスタンドアロン クエリとして使用でき、各クエリは標準のグラフ アルゴリズムを実装します。 アルゴリズムの実行中に、ユーザーは、JSON 形式のストリーム出力、出力値のテーブル ファイルへの書き込み、頂点属性値としての保存など、3 つの異なる形式の出力結果を選択できます。 現在、GSQL のグラフ アルゴリズム ライブラリのオープン ソース コア アルゴリズムは、パス検索アルゴリズム、中心性を測定するアルゴリズム、グループ性を測定するアルゴリズムの 3 つのカテゴリに分類できます。 パス検索アルゴリズムは、ユーザーが最短パスを見つけたり、パスの実現可能性や品質を評価したりするのを支援するために使用されます。主なものは次のとおりです。
中心性を測定するアルゴリズムは、ネットワーク内の頂点の全体に対する重要性を判断するのに役立ち、「場所がどの程度中心的であるか」などの質問を説明するために使用できます。主なものは次のとおりです。
グループ度を測定するアルゴリズムは、主にネットワーク構造における個々の結合または分割の程度を評価するために使用され、ネットワークの組織化の強化または弱体化の傾向を取得することもできます。主なものは次のとおりです。
図: TigerGraphアルゴリズムライブラリの概要 TigerGraph GSQLアルゴリズムライブラリの特徴 TigerGraph によって特別に開発されたグラフ データベース クエリ言語である GSQL は、ユーザーの学習と使用のハードルを大幅に下げ、ユーザーが特に専門的なデータベースの知識を持っている必要がありません。 GSQL グラフ アルゴリズムは本質的に GSQL クエリであるため、アルゴリズム クエリを実行するアクションと GSQL クエリを実行するアクションは同じです。 TigerGraph GSQL クエリ ステートメントはグラフ データベース アルゴリズムに特に適しているため、高性能 GSQL アルゴリズム ライブラリには重要な機能と利点があります。
TigerGraph は、大規模なグラフ ストレージと大規模なグラフ処理をサポートし、非常に強力なクエリ言語とアルゴリズム ライブラリを備えた、非常に完全かつ最適化されたグラフ データベース プラットフォームです。 TigerGraph の技術的進歩は、グラフ データベース開発の最新の方向性を表し、第 3 世代のグラフ データベース時代への正式な参入を意味します。 TigerGraph は、Strata Data Awards の「最も破壊的なスタートアップ」賞も受賞しました。 市場のグラフ データベース ソリューションと比較すると、TigerGraph のネイティブ並列グラフ システムは、クエリ速度とストレージ容量の点で明らかに優位に立っています。さらに、TigerGraph は現在、パブリック クラウド (AWS および Azure) での GSQL クエリとカスタマイズ可能なグラフ アルゴリズム ライブラリの適用をサポートする TigerGraph Cloud をリリースしています。 世界最速かつ最も強力なグラフ データベースを体験するには、TigerGraph Web サイトにアクセスして永久に無料の開発者バージョンを入手してください。高性能 GSQL アルゴリズム ライブラリを入手するには、github にログインしてダウンロードしてください。アルゴリズム ライブラリの詳細なドキュメントを読むには、TigerGraph ドキュメント共有 Web サイトにログインしてください。 |
<<: 人工知能は第五の変革をもたらします。あなたはこのチャンスをつかむことができますか?
>>: 【WOT2018】不正防止、電力、医療分野におけるAI技術の最先端実践
人工知能の基礎教育を強化することは、将来の社会の発展に備えるための避けられない選択であり、要件です。...
IoT と AI の誇大宣伝サイクルは、企業が大きな価値を認識し始める段階まで進んでいます。 IoT...
1956年に人工知能の概念が提案されて以来、人工知能と労働市場の関係については議論されてきました。...
生成型 AI の台頭は単なる外的な現れに過ぎません。それが私たちに伝えているのは、新しい技術の波の到...
大規模言語モデル (LLM) の出現により、複数の分野でイノベーションが促進されました。しかし、思考...
人工知能、コンピュータービジョン、モノのインターネット、その他の先進技術を備えたロボット警察は、法と...
Cactiパーセンテージ監視アルゴリズムの具体的な方法は次のとおりです。 cacti のテンプレート...
ディープラーニングは、小切手や封筒に手書きされた文字しか認識できなかった時代から、長い道のりを歩んで...
今回、人工知能アルゴリズムが国際数学オリンピック(IMO)で大きな進歩を遂げました。本日発行された国...
最初のトレンドは、すべてのIT大手がAIクラウドサービスに多額の投資を行うことです。AI-aaS、つ...
CES ではさまざまな新技術が注目を集めようと競い合っていたが、同じ場所で悲劇が起きた。自動運転モー...