BERTに続き、この新しいモデルは11のNLPベンチマークで再び記録を更新しました。

BERTに続き、この新しいモデルは11のNLPベンチマークで再び記録を更新しました。

BERT が 11 個の NLP 記録を破って以来、幅広いタスクに適用できる NLP 事前トレーニング済みモデルが大きな注目を集めています。最近、Microsoft はこれらの 11 の NLP タスクで BERT を上回る包括的なモデルを発表しました。現在、「Microsoft D36***I & MSR AI」というモデルには対応する論文やプロジェクトアドレスが提供されていないため、新しい事前トレーニング方法であるかどうかは不明です。

BERT と Microsoft の新しいモデルはどちらも、一般言語理解評価 (GLUE) ベンチマークの 11 のタスクを使用しており、GLUE を使用して、幅広い自然言語理解タスクにおけるモデルの堅牢性を実証したいと考えています。 GLUE ベンチマークでは特定のモデルに関する知識は必要ないため、原則として、文や文のペアを処理し、対応する予測を生成できるシステムであれば、評価に参加できます。これら 11 のベンチマーク タスクは、タスク全体にわたるモデルの機能、特にパラメータ共有や転移学習のパフォーマンスを測定することに重点を置いています。

GLUE ベンチマークにおける Microsoft の新しいモデルのパフォーマンスから判断すると、少なくとも 11 の NLP タスクで BERT-Large よりも効率的です。この高い効率は、81.9 という全体的なタスク スコアだけでなく、パラメータ効率にも反映されています。 Microsoft の新しいモデルには 1 億 1,000 万個のパラメーターしかありません。これは、BERT-Large モデルの 3 億 3,500 万個のパラメーターよりもはるかに少なく、BERT-Base と同じ数のパラメーターです。次の図は、GLUE ベンチマークの上位 5 つのモデルを示しています。

「Microsoft D36***I & MSR AI」モデルの説明ページでは、新しいモデルはマルチタスク共同学習を使用しています。したがって、すべてのタスクは同じ構造を共有し、マルチタスク トレーニング アプローチを通じて共同で学習されます。さらに、これら 11 のタスクは、文対分類 MNLI、QQP、QNLI、STS-B、MRPC、RTE、SWAG、単一文分類タスク SST-2、CoLA、質問応答タスク SQuAD v1.1、単一文注釈タスク (名前付きエンティティ認識) CoNLL-2003 NER の 4 つのカテゴリに分類できます。

このうち、文章ペア分類タスクでは、質問と回答のペアに正解が含まれているかどうかを判定するQNLIや、2つの文章がどの程度類似しているかを判定するSTS-Bなどがあり、いずれも文章間の関係性を処理するために使われています。単文分類タスクには、文の感情傾向を判断するSST-2タスクと文法の正しさを判断するCoLAタスクがあり、どちらも文の内部関係を扱います。

SQuAD v1.1 質問応答データセットでは、モデルは質問を通じて段落内の正解の位置と長さを取得します。 ***名前付きエンティティ認識データセット CoNLL では、各時間ステップで人物や場所などのラベルが何であるかを予測します。

以下は、さまざまなタスクにおける Microsoft の新しいモデルのスコアです。

現時点では、Microsoft の新しいモデルのパフォーマンスはまだ非常に限られています。マルチタスクの事前トレーニング後に BERT などのより広範な NLP タスクに使用できれば、このような効率的なモデルには間違いなく大きな利点があります。

<<:  在庫 | 今年の世界の AI 事情

>>:  Facebookは、さまざまな機械学習の問題に適用できる、勾配フリー最適化のためのオープンソースツール「Nevergrad」をリリースしました。

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

データ管理はAI革命の最大の課題となるでしょうか?

最新のデータへの投資は人工知能の拡張を成功させる上で重要ですが、調査によると、企業の半数がコストの障...

5G無人配送車両が北京に登場、現在試験運用中

最近、北京市自転車・電動自動車産業協会が主催した「第一回ターミナル配送インテリジェント交通サミットフ...

商業ビルのエネルギー効率における人工知能の役割

人工知能は商業ビルを変革し、エネルギー使用に関してよりスマートなものにしています。周囲に誰もいないと...

...

機械学習とビジネスを組み合わせる上で最も重要なことは何でしょうか?

純粋に学術的な目的で機械学習モデルを構築することと、製造、金融サービス、小売、エンターテインメント、...

...

バッチ正規化の呪い

バッチ正規化は、確かにディープラーニングの分野における大きな進歩の 1 つであり、近年研究者によって...

天文学者は人工知能を使って宇宙の実際の形を明らかにする

日本の天文学者たちは、銀河の形状のランダムな変化によって生じる天文データの「ノイズ」を除去する新しい...

...

App Storeが検索アルゴリズムを大幅に変更:名前よりも人気に重点を置く

アメリカのテクノロジーブログ「TechCrunch」の主要寄稿者であるMG Siegler氏によると...

あるいは人間の目よりも鮮明です!世界初の3D人工眼球が発売され、何百万人もの人々が視力を取り戻す

[[327384]] 5月24日、メディアの報道によると、香港科技大学の研究者らがネイチャー誌に発表...

幾何学を利用してディープラーニングモデルのパフォーマンスを向上させることは、コンピュータービジョン研究の未来です。

[[189965]]ディープラーニングはコンピュータービジョンを変革しました。現在、ほとんどの問題...

Google は、DQN と同等で、より優れた一般化パフォーマンスを備えた 2 つの新しい強化学習アルゴリズムを実装しました。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...