コンテナ化された機械学習モデルの作成

コンテナ化された機械学習モデルの作成

[[252634]]

データ サイエンティストは機械学習モデルを作成した後、それを本番環境にデプロイする必要があります。さまざまなインフラストラクチャで実行するには、コンテナを使用し、REST API を通じてモデルを公開するのが、機械学習モデルをデプロイする一般的な方法です。この記事では、Podman コンテナで Connexion を使用して、REST API で TensorFlow 機械学習モデルを起動する方法を説明します。

準備する

まず、次のコマンドで Podman をインストールします。

  1. sudo dnf - y install podman

次に、コンテナ用の新しいフォルダーを作成し、そのディレクトリに移動します。

  1. mkdir deployment_container && cd deployment_container

TensorFlow モデル用の REST API

次のステップは、機械学習モデル用の REST API を作成することです。この github リポジトリには、事前トレーニング済みのモデルと、REST API を動作させるためのセットアップが含まれています。

次のコマンドを使用して、 deployment_containerディレクトリにクローンを作成します。

  1. git clone https : //github.com/svenboesiger/titanic_tf_ml_model.git

prediction.py と ml_model/

prediction.py は Tensorflow 予測を実行し、20x20x20 ニューラル ネットワークの重みはフォルダー ml_model/ にあります。

swagger.yaml

swagger.yaml は、Swagger 仕様を使用して Connexion ライブラリ API を定義します。このファイルには、サーバーが入力パラメータの検証、出力応答データの検証、および URL エンドポイントの定義を提供するために必要なすべての情報が含まれています。

さらに、Connexion は、JavaScript を使用して API を呼び出し、DOM を更新する方法を示す、シンプルでありながら便利なシングルページ Web アプリケーションを提供します。

  1. swagger : "2.0"
  2. info :
  3. description : This is the swagger file that goes with our server code
  4. version : "1.0.0"
  5. title : Tensorflow Podman Article
  6. consumes :
  7. - "application/json"
  8. produces :
  9. - "application/json"
  10. basePath : "/"
  11. paths :
  12. / survival_probability :
  13. post :
  14. operationId : "prediction.post"
  15. tags :
  16. - "Prediction"
  17. summary : "The prediction data structure provided by the server application"
  18. description : "Retrieve the chance of surviving the titanic disaster"
  19. parameters :
  20. - in : body
  21. name : passenger
  22. required : true
  23. schema :
  24. $ref : '#/definitions/PredictionPost'
  25. responses :
  26. '201' :
  27. description : 'Survival probability of an individual Titanic passenger'
  28. definitions :
  29. PredictionPost :
  30. type : object

server.py と requirements.txt

server.py は、Connexion サーバーを起動するためのエントリ ポイントを定義します。

  1. import connexion
  2. app = connexion . App ( __name__ , specification_dir = './' )
  3. app . add_api ( 'swagger.yaml' )
  4. if __name__ == '__main__' :
  5. app . run ( debug = True )

requirements.txt は、プログラムを実行するために必要な Python パッケージを定義します。

  1. connexion
  2. tensorflow
  3. pandas

コンテナ化しましょう!

Podman でイメージをビルドするには、上記の準備手順で作成したdeployment_containerディレクトリにDockerfileという新しいファイルを作成します。

  1. FROM fedora : 28
  2. # File Author / Maintainer
  3. MAINTAINER Sven Boesiger < donotspam@ujelang . com >
  4. # Update the sources
  5. RUN dnf - y update -- refresh
  6. # Install additional dependencies
  7. RUN dnf - y install libstdc ++
  8. RUN dnf - y autoremove
  9. # Copy the application folder inside the container
  10. ADD / titanic_tf_ml_model / titanic_tf_ml_model
  11. # Get pip to download and install requirements :
  12. RUN pip3 install - r / titanic_tf_ml_model / requirements . txt
  13. # Expose ports
  14. EXPOSE 5000
  15. # Set the default directory where CMD will execute
  16. WORKDIR / titanic_tf_ml_model
  17. # Set the default command to execute
  18. # when creating a new container
  19. CMD python3 server . py

次に、次のコマンドを使用してコンテナ イメージをビルドします。

  1. podman build - t ml_deployment .

コンテナの実行

コンテナ イメージがビルドされ準備ができたら、次のコマンドを使用してローカルで実行できます。

  1. podman run - p 5000 : 5000 ml_deployment

Swagger/Connexion UI にアクセスしてモデルをテストするには、Web ブラウザに http://0.0.0.0:5000/ui と入力します。

もちろん、アプリケーション内の REST API を介してモデルにアクセスすることもできます。

<<:  ビッグデータと人工知能の未来は同じになるだろう

>>:  スクリーンはあなたの運命を変えることはできません! AI教育で裸で泳いでいるのは誰ですか? 16社が摘発される

ブログ    
ブログ    

推薦する

ビッグデータ、人工知能、ロボットの血縁関係とは?

ビッグデータ、人工知能(AI)、ロボット、アルゴリズム、ディープラーニング、モノのインターネット、セ...

AIは教育業界にどのような影響を与えるのでしょうか?これら6つの側面について学ぶ

人工知能は、SFの世界のものから、私たちの日常生活に影響を与える重要な技術へと変化しました。現在、多...

BEV におけるデータセット間レーダーカメラ融合に関する実験的研究

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

2021年に人工知能がビジネスをどう変えるのか

従来のビジネス慣行からスマートなアプリケーションベースの慣行へと技術が進歩する中、企業は2021年に...

...

あなたのデータ戦略は GenAI に対応していますか?

AI、特に GenAI の急速な発展により、分析および IT リーダーには、データ戦略とデータ管理...

TransformerはCNNを超え、計算複雑性の問題を解決します

[[390500]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

GoはPythonよりはるかに進んでおり、機械学習の人材は非常に不足しています。世界中の16,655人のプログラマーが真実を語ります

Go は開発者の間でますます人気が高まっています。数年前、Didiのエンジニアから、DidiではGo...

...

コカ・コーラの新たな試み:アートや広告制作における生成AIの活用

生成型 AI の新たな波に直面して、私たちはそれに積極的に適応するか、AI (または AI を受け入...

顔認識の60年: EU一般データ保護規則は本当に「史上最も厳しい」ものなのか?

2018 年 5 月に、EU 一般データ保護規則 (GDPR) が正式に施行されました。それ以来、...

...

...

機械学習のための特徴選択の5つの方法!

使用される特徴の数が増えるにつれて、モデルのパフォーマンスが向上することが分かっています。ただし、ピ...