コンテナ化された機械学習モデルの作成

コンテナ化された機械学習モデルの作成

[[252634]]

データ サイエンティストは機械学習モデルを作成した後、それを本番環境にデプロイする必要があります。さまざまなインフラストラクチャで実行するには、コンテナを使用し、REST API を通じてモデルを公開するのが、機械学習モデルをデプロイする一般的な方法です。この記事では、Podman コンテナで Connexion を使用して、REST API で TensorFlow 機械学習モデルを起動する方法を説明します。

準備する

まず、次のコマンドで Podman をインストールします。

  1. sudo dnf - y install podman

次に、コンテナ用の新しいフォルダーを作成し、そのディレクトリに移動します。

  1. mkdir deployment_container && cd deployment_container

TensorFlow モデル用の REST API

次のステップは、機械学習モデル用の REST API を作成することです。この github リポジトリには、事前トレーニング済みのモデルと、REST API を動作させるためのセットアップが含まれています。

次のコマンドを使用して、 deployment_containerディレクトリにクローンを作成します。

  1. git clone https : //github.com/svenboesiger/titanic_tf_ml_model.git

prediction.py と ml_model/

prediction.py は Tensorflow 予測を実行し、20x20x20 ニューラル ネットワークの重みはフォルダー ml_model/ にあります。

swagger.yaml

swagger.yaml は、Swagger 仕様を使用して Connexion ライブラリ API を定義します。このファイルには、サーバーが入力パラメータの検証、出力応答データの検証、および URL エンドポイントの定義を提供するために必要なすべての情報が含まれています。

さらに、Connexion は、JavaScript を使用して API を呼び出し、DOM を更新する方法を示す、シンプルでありながら便利なシングルページ Web アプリケーションを提供します。

  1. swagger : "2.0"
  2. info :
  3. description : This is the swagger file that goes with our server code
  4. version : "1.0.0"
  5. title : Tensorflow Podman Article
  6. consumes :
  7. - "application/json"
  8. produces :
  9. - "application/json"
  10. basePath : "/"
  11. paths :
  12. / survival_probability :
  13. post :
  14. operationId : "prediction.post"
  15. tags :
  16. - "Prediction"
  17. summary : "The prediction data structure provided by the server application"
  18. description : "Retrieve the chance of surviving the titanic disaster"
  19. parameters :
  20. - in : body
  21. name : passenger
  22. required : true
  23. schema :
  24. $ref : '#/definitions/PredictionPost'
  25. responses :
  26. '201' :
  27. description : 'Survival probability of an individual Titanic passenger'
  28. definitions :
  29. PredictionPost :
  30. type : object

server.py と requirements.txt

server.py は、Connexion サーバーを起動するためのエントリ ポイントを定義します。

  1. import connexion
  2. app = connexion . App ( __name__ , specification_dir = './' )
  3. app . add_api ( 'swagger.yaml' )
  4. if __name__ == '__main__' :
  5. app . run ( debug = True )

requirements.txt は、プログラムを実行するために必要な Python パッケージを定義します。

  1. connexion
  2. tensorflow
  3. pandas

コンテナ化しましょう!

Podman でイメージをビルドするには、上記の準備手順で作成したdeployment_containerディレクトリにDockerfileという新しいファイルを作成します。

  1. FROM fedora : 28
  2. # File Author / Maintainer
  3. MAINTAINER Sven Boesiger < donotspam@ujelang . com >
  4. # Update the sources
  5. RUN dnf - y update -- refresh
  6. # Install additional dependencies
  7. RUN dnf - y install libstdc ++
  8. RUN dnf - y autoremove
  9. # Copy the application folder inside the container
  10. ADD / titanic_tf_ml_model / titanic_tf_ml_model
  11. # Get pip to download and install requirements :
  12. RUN pip3 install - r / titanic_tf_ml_model / requirements . txt
  13. # Expose ports
  14. EXPOSE 5000
  15. # Set the default directory where CMD will execute
  16. WORKDIR / titanic_tf_ml_model
  17. # Set the default command to execute
  18. # when creating a new container
  19. CMD python3 server . py

次に、次のコマンドを使用してコンテナ イメージをビルドします。

  1. podman build - t ml_deployment .

コンテナの実行

コンテナ イメージがビルドされ準備ができたら、次のコマンドを使用してローカルで実行できます。

  1. podman run - p 5000 : 5000 ml_deployment

Swagger/Connexion UI にアクセスしてモデルをテストするには、Web ブラウザに http://0.0.0.0:5000/ui と入力します。

もちろん、アプリケーション内の REST API を介してモデルにアクセスすることもできます。

<<:  ビッグデータと人工知能の未来は同じになるだろう

>>:  スクリーンはあなたの運命を変えることはできません! AI教育で裸で泳いでいるのは誰ですか? 16社が摘発される

ブログ    
ブログ    

推薦する

OpenAIの従業員が996の勤務スケジュールを公開、ネットユーザー「本当の競争は強制する必要はない」

OpenAI も 996 で動作することが確認されています (doge)。 『Thinking C...

...

アリババが世界初のAI中国語フォント「Ali Hanyi Intelligent Bold」を開発

1月22日、アリババはHanyi Fontと提携し、世界初の人工知能中国語フォント「 Ali Han...

...

...

...

...

...

AIが顧客体験を変革する10の方法

今日、消費者はオンライン小売業者に対して非常に高い期待を抱いています。多くの場合、顧客のショッピング...

最新の軌道予測の概要:基本的な定義からさまざまな方法と評価まで

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

機械学習の導入を容易にする 6 つのツール

今日、多くのベンダーは、データインテリジェントなビジネスユーザーが AI テクノロジーを採用できるよ...

...

AIは「GitHub危機」を乗り越えられるか?

機械学習は現在、この分野の急速な発展を妨げるいくつかの危機に直面しています。これらの危機は、より広範...

人工知能の活発な発展は、ホストのような人々が将来的に職を失うことを意味する。

仮想ホスト[[427210]]科学技術の急速な発展に伴い、多くのハイテク製品が私たちの生活に登場して...

顔認識技術の推進は情報漏洩に悩まされている

2021年CCTV「3.15」ガラで、多くの店舗がカメラを使って顔情報を取得している事例が暴露され、...