今日のデータとAI市場における不確実性にどう対処するか

今日のデータとAI市場における不確実性にどう対処するか

データ分析と人工知能 (AI) 市場に関するニュースをフォローしている人なら誰でも、過去数年間で多くの変化があったことを知っています。オープンソース言語の台頭により、SAS などの基礎的な分析テクノロジーに圧力がかかっています。スタートアップ企業は、持続可能なビジネスモデルを実現できないまま、資金を使い果たし、痛い教訓を学んできた。もちろん、生成 AI の急速な導入により、競争に遅れを取らないためにできる限りのことをしているかどうか、誰もが疑問を抱いています。つまり、データ分析においてこれほど不確実性が高まったことはかつてないほどです。

したがって、長期的な視点で分析パートナーシップを構築することがこれまで以上に重要になります。選択したテクノロジーは、時の試練に耐えられるでしょうか? 実績のある企業を選択していますか? 最大規模でのコストはどの程度になるでしょうか? データ使用量の増加に伴ってチームはどのように進化すべきでしょうか? 状況が厳しくなったとき。このパートナーは私を助けてくれるでしょうか? これらはパートナーの決定を分析する際に常に問うべき重要な質問ですが、今日の絶えず変化する環境では、先を見据えることが特に重要です。

データとAIテクノロジーに注目すべき点

まずは技術的な面から始めましょう。市場では大きな変化が起きており、データ配信ワークフローにベンダーが増えるとリスクも増大します。組織は、あらゆる範囲をカバーし、最初から最後まで仕事を完了できるデータと AI テクノロジを探す必要があります。テクノロジーに関しては、組織は以下を含むすべてを提供する企業を探す必要があります。

● データ準備

● 抽出、変換、ロード (ETL)

● 自動化、自動予測、自動特徴エンジニアリング

● 生成AIの微調整

● モデル開発

● ワークロードオーケストレーション

● データの視覚化

● 多言語分析(Python、R、SQL、SASを含む)

さらに、これらすべてのツールが同じテクノロジー パートナーによって提供されると、より自然かつエレガントに連携する可能性が高くなります。つまり、時間の半分をツールを組み合わせることに費やす必要がなくなり、データ ワーカーが複数の役割を担う場合でも、ワークフローを自分で組み合わせるためにツールからツールへと切り替える必要がなくなります。

最も重要なのは、これらすべてを実現し、合理化されたワークフローで提供し、さらに、専門的なデータ スキルを持つ人と持たない人の両方をサポートする方法で提供できるソフトウェア パートナーです。こうすることで、データチームがすべてを行う必要がなくなります。ノーコードおよびローコード ツールを使用すると、データ チーム以外の関係者が、データ チームの作業の 80% を占める小さいながらも重要なタスクを処理できるようになり、データ チームは本格的なデータ サイエンスを必要とする最も困難なプロジェクトに取り組むことができます。

理想的には、同じパートナーがサービス パッケージ全体を提供できる必要があります。エンドツーエンドのシームレスな統合、ノーコードからコードファーストまで。これらは、摩擦のない AI と強力なテクノロジー パートナーの特徴です。

データとAIのビジネスアプローチで注目すべき点

しかし、テクノロジーは戦いの半分にしか過ぎません。多くの組織は優れたテクノロジーを有していますが、安定性に欠けています。最も重要なのは、ビジネス面では、リーダーや組織がデータ分析と AI のニーズを満たすパートナーを探す際に、実績と安定性のあるパートナーを優先する必要があることです。

今日の最先端の組織にとって、データはすべてです。不安定なパートナーによって引き起こされる混乱や誤解は、短期的および長期的な成功の両方を危険にさらす許容できない遅延です。データ ソリューションを長期にわたって使用したい場合は、データ ベンダーが長期にわたって使用できることを確認してください。

さらに、深い専門知識と世界クラスのクライアント サービスの実績を持つ組織と提携することで、日々の不確実性を最小限に抑えることができます。パートナーは単なるサプライヤーではなく、パートナーであるべきです。物事が困難になったとき、助けてくれる人が近くにいるといいのですが。

最後に、市場の不確実性は、誰もが価格と価値を懸念することを意味します。顧客向けに特別に設計されたビジネス モデルとライセンス システムを持つパートナーを優先します。

<<: 

>>: 

ブログ    

推薦する

...

重要インフラのサイバーセキュリティリスク管理における AI の影響

AIがサイバー攻撃から重要なインフラを守るためにどう役立つか 電力網、水道システム、交通網などの重要...

人工知能の時代では、プログラマーは排除されるのでしょうか?

よく考えてみると、この質問は少し皮肉に思えます。将来、新しいクリエイター (AI) がクリエイター ...

滴滴出行とスタンフォード人工知能研究所が協力

滴滴出行は5月5日、スタンフォード人工知能研究所との提携を発表した。両者は人工知能のホットな話題につ...

...

人工知能と5G: 新たなデータの世界へ

調査によると、AI デバイスのベンダー中心の展開モデルでは、トラフィックの急激な増加に対応できないこ...

人工知能はますますあらゆる分野に浸透しつつある

近年、人工知能技術は急速に発展し、ますます多くの分野でその急速な発展の勢いと大きな可能性を発揮してい...

...

国内生産のテスラは、自動運転アルゴリズムとチップを除いてすべて中国製です

みんなで思い出すと「サプライチェーン」が浮かび上がる最近、テスラは中国で国産テスラ車の一部をリコール...

メタバースの開発にはどのような重要な技術が必要ですか?

メタバースは、信頼できる資産価値とアイデンティティ認証を備えた仮想アクティビティを実行するためのプラ...

機械学習では自然言語理解を解決できない

経験とデータに基づく革命統計革命は 1990 年代初頭に人工知能 (AI) に広がり、2000 年代...

...

...

...

AIは人間の仕事を奪うが、これらの業界ではより多くの仕事も生み出すだろう

イーロン・マスク、ビル・ゲイツらは、人工知能(以下、AI)が「世界の終末」をもたらすだろうと国民に繰...