Google は機械学習を利用して画像内のオブジェクトにラベルを付け、インターフェース全体の速度を 3 倍に向上させました。

Google は機械学習を利用して画像内のオブジェクトにラベルを付け、インターフェース全体の速度を 3 倍に向上させました。

台湾メディアiThome.com.twによると、Googleは2018年のACMマルチメディアカンファレンスで機械学習を使った画像注釈インターフェースを発表し、ユーザーは画像内のオブジェクトの輪郭とラベルを素早くマークできるようになり、全体的なタグ付け速度が3倍に向上したという。最新のディープラーニングベースのコンピューター ビジョン モデルのパフォーマンスはラベル付けされたトレーニング データの量に依存するため、データベースが大きいほど機械学習のパフォーマンスが向上します。

Google は多くのディープラーニング研究で、高品質のトレーニング データを取得するのは容易ではないと繰り返し述べており、この問題はコンピューター ビジョンの開発、特に自動運転、ロボット工学、画像検索などのピクセルベースの認識タスクにおける主なボトルネックとなっています。

従来の方法では、ユーザーは手動でラベル付けツールを使用して、画像内のオブジェクトの境界を囲む必要があります。Google は、COCO plus Stuff データセットを使用すると、画像にラベルを付けるには 19 分、データセット全体にラベルを付けるには 53,000 時間かかり、時間がかかりすぎて非効率的であると述べています。そこで Google は、機械学習を使用してユーザーが画像内のオブジェクトの輪郭のラベルをすばやく見つけられるようにする新しいトレーニング データ ラベリング方法である Fluid Annotation を検討しました。

Fluid アノテーションは、強力なセマンティック セグメンテーション モデルの出力から始まります。ユーザーは、機械学習によって支援された自然なユーザー インターフェイスを使用して、それを編集および変更できます。このインターフェイスは、修正する必要があるオブジェクトと順序をユーザーに提供し、マシンがまだ明確に識別できない部分にユーザーが集中できるようにします。画像に注釈を付けるために、Google は分類ラベルと信頼スコアが付いた約 1,000 枚の画像を使用してセマンティック セグメンテーション モデル (Mask-RCNN) を事前トレーニングしました。最も信頼度の高いセグメントは、最初のラベル付けに使用できます。

Fluid Annotation は、ユーザーが 1 回のクリックでオブジェクトにすばやくラベルを付けるための候補リストを生成します。また、ユーザーは、検出されていないオブジェクトをカバーする範囲マーカーを追加し、スクロールして最も適切な形状を選択することもできます。追加できるだけでなく、既存のオブジェクト タグを削除したり、オブジェクトの深度順序を変更したりすることもできます。

流動的な注釈付けの現在のフェーズの目標は、画像をより速く簡単に作成し、データセット全体のラベル付け速度を最大 3 倍に向上させることです。次に、Google はオブジェクト境界のラベル付けを改善し、より多くの人工知能を使用してインターフェース操作を高速化し、現在認識できないカテゴリを処理できるようにインターフェースを拡張します。

<<:  人工知能は人間の言語を習得したのか?見た目は騙されることがある

>>:  中国では普及していない無人コンビニが、なぜアメリカでは人気があるのか​​?

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

PyTorch エクスペリエンス ガイド: ヒントと落とし穴

PyTorch の開発者は、PyTorch の哲学は即時のタスクを解決すること、つまり計算グラフをそ...

Googleの人工知能学習により低ピクセル画像も鮮明に

【環球網智能報記者張洋】過去2年間で、人工知能技術が次のホットスポットとなり、多くの有名なテクノロジ...

AIがAIに勝つ: Googleの研究チームがGPT-4を使ってAI-Guardianのレビューシステムを打ち破る

8月2日、Googleの研究チームはOpenAIのGPT-4を使用して他のAIモデルのセキュリティ保...

...

7,346 人が参加したアルゴリズム コンテストは JD.com に何をもたらしたのでしょうか?

[51CTO.comより引用] 今年3月中旬、JD.comとIntelが共同主催するJDataアル...

過去10年間のGoogleアルゴリズムの変化

Google のアルゴリズムは毎年 500 ~ 600 回も変更されますが、その多くは小さな変更です...

ディープラーニングの次の段階:ニューラルアーキテクチャの自己学習により、優れたコンピュータビジョンモデルが実現

[[275255]]ディープラーニングは人工知能モデルの先駆けです。画像認識、音声認識、テキスト理解...

これら10機関からの24の調査データはAIのトレンドを理解するのに役立ちます

[[256519]] 2019年1月現在の人工知能の現状は?最近の調査では、AI の人気、測定可能な...

AからZまで、人工知能が世界を変える26のキーワード

今日、人工知能はもはや漠然とした研究室の技術ではなく、私たちの生活のあらゆる側面に組み込まれています...

...

目に見える機械学習: ニューラルネットワークをゼロから理解する

機械学習に関する古いジョークがあります。機械学習は高校のセックスのようなものです。誰もがやっていると...

美団点評におけるディープラーニングの応用

序文近年、ディープラーニングは音声、画像、自然言語処理などの分野で優れた成果を上げており、最も注目さ...

トイレに座ってアルゴリズムを見る: クイックソート

高速かつ経済的なソートアルゴリズムスペースを無駄にせず、より高速なソートアルゴリズムはありますか?そ...

Cloudera は研究から実稼働までエンタープライズ機械学習を加速します

クラウド向けに最適化された機械学習および分析のための最新プラットフォームを提供する Cloudera...