Google は機械学習を利用して画像内のオブジェクトにラベルを付け、インターフェース全体の速度を 3 倍に向上させました。

Google は機械学習を利用して画像内のオブジェクトにラベルを付け、インターフェース全体の速度を 3 倍に向上させました。

台湾メディアiThome.com.twによると、Googleは2018年のACMマルチメディアカンファレンスで機械学習を使った画像注釈インターフェースを発表し、ユーザーは画像内のオブジェクトの輪郭とラベルを素早くマークできるようになり、全体的なタグ付け速度が3倍に向上したという。最新のディープラーニングベースのコンピューター ビジョン モデルのパフォーマンスはラベル付けされたトレーニング データの量に依存するため、データベースが大きいほど機械学習のパフォーマンスが向上します。

Google は多くのディープラーニング研究で、高品質のトレーニング データを取得するのは容易ではないと繰り返し述べており、この問題はコンピューター ビジョンの開発、特に自動運転、ロボット工学、画像検索などのピクセルベースの認識タスクにおける主なボトルネックとなっています。

従来の方法では、ユーザーは手動でラベル付けツールを使用して、画像内のオブジェクトの境界を囲む必要があります。Google は、COCO plus Stuff データセットを使用すると、画像にラベルを付けるには 19 分、データセット全体にラベルを付けるには 53,000 時間かかり、時間がかかりすぎて非効率的であると述べています。そこで Google は、機械学習を使用してユーザーが画像内のオブジェクトの輪郭のラベルをすばやく見つけられるようにする新しいトレーニング データ ラベリング方法である Fluid Annotation を検討しました。

Fluid アノテーションは、強力なセマンティック セグメンテーション モデルの出力から始まります。ユーザーは、機械学習によって支援された自然なユーザー インターフェイスを使用して、それを編集および変更できます。このインターフェイスは、修正する必要があるオブジェクトと順序をユーザーに提供し、マシンがまだ明確に識別できない部分にユーザーが集中できるようにします。画像に注釈を付けるために、Google は分類ラベルと信頼スコアが付いた約 1,000 枚の画像を使用してセマンティック セグメンテーション モデル (Mask-RCNN) を事前トレーニングしました。最も信頼度の高いセグメントは、最初のラベル付けに使用できます。

Fluid Annotation は、ユーザーが 1 回のクリックでオブジェクトにすばやくラベルを付けるための候補リストを生成します。また、ユーザーは、検出されていないオブジェクトをカバーする範囲マーカーを追加し、スクロールして最も適切な形状を選択することもできます。追加できるだけでなく、既存のオブジェクト タグを削除したり、オブジェクトの深度順序を変更したりすることもできます。

流動的な注釈付けの現在のフェーズの目標は、画像をより速く簡単に作成し、データセット全体のラベル付け速度を最大 3 倍に向上させることです。次に、Google はオブジェクト境界のラベル付けを改善し、より多くの人工知能を使用してインターフェース操作を高速化し、現在認識できないカテゴリを処理できるようにインターフェースを拡張します。

<<:  人工知能は人間の言語を習得したのか?見た目は騙されることがある

>>:  中国では普及していない無人コンビニが、なぜアメリカでは人気があるのか​​?

ブログ    
ブログ    
ブログ    

推薦する

VB.NET 暗号化アルゴリズムの基本概念の分析

プログラミング言語の場合、その機能性を評価する上で最も重要な要素の 1 つはセキュリティ評価です。 ...

機械学習: TensorFlow 2.0 の 10 のヒント

この記事では、TensorFlow 2.0 の 10 の機能について説明します。 [[326673]...

優れたプレーンテキストモデル? GPT-4は準備完了

2020年5月、GPT-3はGPT-2のリリースから1年後に正式にリリースされました。GPT-2も...

IntelがBigDLディープラーニングフレームワークをリリース、CPUを使ってGPUを攻撃する予定

[51CTO.com クイック翻訳] 先週、Intel は分散型ディープラーニング用のオープンソース...

...

ロボットは人工知能技術に基づいて人間の表情を作る

信頼関係を築く上で、私たちの表情が果たす役割は非常に大きいにもかかわらず、ほとんどのロボットの顔はプ...

...

2024 年の人工知能に関するトップ 10 の予測

2023年の人工知能分野でキーワードを1つだけ選ぶとしたら、それはおそらく「ビッグモデル」でしょう。...

Jitu: 5秒でNeRFをトレーニングしましょう!オープンソース

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

ベンジオとヒントンの絶え間ない探求:ディープラーニングアルゴリズムが脳の学習方法を明らかにする

[[384610]] 「脳の学習メカニズムや学習方法の一部を解明できれば、人工知能はさらに進歩できる...

今後、セキュリティ分野で顔認識技術はどのように発展していくのでしょうか?

顔認識とは、顔の特徴情報の本人分析を利用して本人認証を行う生体認証技術を指します。人気の生体認証技術...

役に立たない、それとも翻訳ツール?日本が「会話」できるスマートマスクを発明

マスクが翻訳機の仕事を引き継ごうとしている。 最近、日本のスタートアップ企業が、マスクを着けていると...

...

...