機械学習にはさまざまな側面があり、調査を始めたときに、特定のトピックの要点を簡潔にリストしたさまざまな「チートシート」を見つけました。最終的に、私は 20 を超える機械学習関連のチートシートのコレクションを作成しました。そのうちのいくつかは定期的に参照し、他のいくつかは大きな恩恵を受けました。この投稿には、オンラインで見つけた 27 個のチートシートが含まれています。見逃したものを見つけた場合は、お知らせください。 機械学習の分野は急速に変化しており、これらはすぐに時代遅れになる可能性があると思いますが、少なくとも今のところはまだ非常に流行しています。 機械学習ここには機械学習アルゴリズムの便利なフローチャートと表がいくつかありますが、私が見つけた最も包括的なものだけを含めました。 ニューラルネットワークアーキテクチャ 出典: http://www.asimovinstitute.org/neural-network-zoo/ ニューラルネットワークパーク Microsoft Azure アルゴリズム フローチャート 出典: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet Microsoft Azure Machine Learning Studio 向け機械学習アルゴリズム SAS アルゴリズム フローチャート 出典: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/ SAS: どの機械学習アルゴリズムを使用すればよいですか? アルゴリズムの概要 出典: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ 機械学習アルゴリズムガイド 出典: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/ 最もよく知られている機械学習アルゴリズムはどれですか? アルゴリズムの長所と短所 出典: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend パイソン当然ながら、Python に関するオンライン リソースは多数存在しますが、このセクションでは私が見つけた最高のチート シートのみを紹介します。 アルゴリズム 出典: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/ Pythonの基礎 出典: http://datasciencefree.com/python.pdf 出典: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA ナンピー 出典: https://www.dataquest.io/blog/numpy-cheat-sheet/ 出典: http://datasciencefree.com/numpy.pdf 出典: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE 出典: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb パンダ 出典: http://datasciencefree.com/pandas.pdf 出典: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U 出典: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb マトプロット 出典: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet ソース: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb Scikit を学ぶ 出典: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk 出典: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html 出典: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb テンソルフロー 出典: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb ピトーチ 出典: https://github.com/bfortuner/pytorch-cheatsheet 数学 機械学習を理解したい場合は、統計(特に確率)、線形代数、微積分についてしっかりと理解している必要があります。私は大学で数学を副専攻しましたが、本当に復習が必要でした。これらのチートシートには、機械学習アルゴリズムの背後にある知っておく必要のある数学のほとんどが記載されています。 確率 出典: http://www.wzchen.com/s/probability_cheatsheet.pdf 確率チートシート 2.0 線形代数 出典: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf 4ページで説明する線形代数 統計 出典: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf 統計チートシート 微積分 出典: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N 微積分チートシート |
<<: AIがあらゆるものを生み出す——2018GMICグローバルモバイルインターネットカンファレンスが開幕
>>: 7年間の変革:WOT2018がテクノロジーの背後にある真実を明らかにする
この記事では、最近 FloydHub ブログで Cathal Horan が紹介した自然言語処理のト...
人々の生活の重要な分野として、医療産業の発展は大きな注目を集めています。現在、医師の診察の難しさや高...
この記事の目的は、現在の機械学習アルゴリズムの実用的かつ簡潔な一覧を提供することです。この記事の内容...
Google の次世代アーキテクチャ Pathways は、大規模なモデルのトレーニングに使用されて...
今日、サイバー犯罪者は機械学習や人工知能などの新しいテクノロジーを使用して、標的の行動をより深く理解...
[[382351]] [51CTO.com クイック翻訳] 人々が今日のニーズについて話すとき、彼ら...
2018 年 10 月 31 日、上海 - 世界有数のソフトウェア インテリジェンス企業である Dy...
Chat GPTのリリース以来、AIはプログラミングをはじめ、さまざまな分野で素晴らしい製品を生み出...
平均と分散のマップ削減一連の数値の平均と分散の式は誰にとっても明らかだと思います。マップ関数とリデュ...
[[274622]]参加者は脳波計を装着し、コンピューターの画面を見つめながら、急速に点滅するターゲ...
偉大な科学的成果は試行錯誤だけでは達成できません。たとえば、宇宙計画におけるすべての打ち上げは、空気...
[[269826]] 「設計アーキテクチャだけを見れば、国産の人工知能チップは外国製のものより劣って...
[[211061]] STATWORX チームは最近、Google Finance API から S...
ビッグデータダイジェスト制作出典: piprogramming編纂者:清寧人工知能は私たちの生活の一...
顔認識技術はAI時代に利便性をもたらすだけでなく、効率も向上させます。 8月21日、百度ブレインオー...