LoRAShear: LLM プルーニングと知識回復に関する Microsoft の最新研究

LoRAShear: LLM プルーニングと知識回復に関する Microsoft の最新研究

LoRAShear は、言語モデリング (LLM) を最適化し、知識を保存するために Microsoft が開発した新しいアプローチです。構造的なプルーニングが可能になり、計算要件が削減され、効率が向上します。

LHSPG テクノロジー (Lora Half-Space Projected Gradient) は、漸進的な構造化プルーニングと動的な知識回復をサポートします。依存グラフ分析とスパース最適化を通じて、さまざまな LLM に適用できます。

LoRAPrune は、LoRA と反復的な構造化プルーニングを組み合わせて、効率的なパラメータの微調整を実現します。 LLAMA v1 の実装では、大規模なプルーニングを行っても同等のパフォーマンスが維持されます。

進化する人工知能の分野では、言語モデリング (LLM) は、大量のテキスト データを処理し、関連情報をすばやく取得し、知識へのアクセス性を高めるための重要なツールとなっています。その影響は広範囲に及び、検索エンジンや質問応答システムの強化からデータ分析の実現まで、幅広い分野に及び、研究者、専門家、知識探求者がその恩恵を受けています。

現時点での最大の問題は、情報の動的な性質により、LLM が知識を常に更新する必要があることです。従来、微調整はこれらのモデルに新たな洞察を吹き込む方法として使用されてきました。開発者はドメイン固有のデータを使用して事前トレーニング済みのモデルを微調整し、最新の状態に保っています。絶えず変化する情報環境と LLM を同期させるには、組織や研究者による定期的な更新が不可欠だからです。しかし、微調整にはコストと時間がかかります。

この緊急のニーズに対応するために、Microsoft の研究者は画期的なアプローチである LoRAShear を導入しました。この革新的なアプローチは、LLM を簡素化するだけでなく、構造的知識の回復も促進します。アーキテクチャのプルーニングの中核は、ニューラル ネットワーク アーキテクチャ内の特定のコンポーネントを削除または削減して、効率、コンパクトさ、計算要件を最適化することです。

Microsoft の LoRAShear は、プログレッシブ構造化プルーニングをサポートするために LHSPG テクノロジを導入しています。このアプローチは、LoRA モジュール間で知識をシームレスに転送し、動的な知識回復ステージを統合します。微調整プロセスは事前トレーニングや指示の微調整に似ており、LLM が最新かつ関連性のある状態に保たれることを保証します。

LoRAShear は、特に LoRA モジュールのサポート範囲内で、依存関係グラフ分析を通じて一般的な LLM に拡張できます。採用されたアルゴリズムは、元の LLM および LoRA モジュールの依存関係グラフを作成します。さらに、LoRA モジュール情報を活用して重み更新中の知識の保存を強化する構造化スパース最適化アルゴリズムが導入されています。

この論文には、LoRA と反復構造化プルーニングを組み合わせて効率的なパラメータの微調整と直接的なハードウェア アクセラレーションを実現する、LoRAPrune と呼ばれる統合技術も記載されています。このメモリ節約アプローチは、プルーニング基準として LoRA の重みと勾配に完全に依存します。このプロセスには、追跡グラフの構築、圧縮するノードのグループの決定、トレーニング可能な変数の分割、そして最後にそれらを LLM に返すことが含まれます。

この論文では、オープンソースの LLAMAv1 に LoRAShear を実装することで、その有効性を実証しています。特に、LLAMAv1 を 20% 削減するとパフォーマンスの低下はわずか 1% ですが、モデルを 50% 削減すると評価ベンチマークで 82% のパフォーマンスが維持されます。

LoRAShear は人工知能の分野における大きな進歩を表しています。 LLM の使用方法が簡素化され、効率化されるだけでなく、重要な知識が確実に保持されます。 AI 駆動型アプリケーションは、コンピューティング リソースを最適化しながら、進化する情報環境に対応できるようになります。組織がデータ処理と知識検索に AI をますます活用するようになるにつれ、LoRAShear のようなソリューションが市場で重要な役割を果たし、効率性と知識の回復力を実現します。

論文アドレス: https://arxiv.org/abs/2310.18356

<<:  Amazon Web Services は、5 つのステップで企業の生成 AI の実現を支援します。

>>:  将来に影響を与える戦略的テクノロジートレンドトップ10

ブログ    

推薦する

自動運転車はどれくらい遠いのでしょうか?

現在、5Gや人工知能産業が活況を呈しており、さまざまな大手企業が利益を最大化するために「応用シナリオ...

ディープラーニングにおける多体問題の解決方法

「多体問題」(N 体問題とも呼ばれる)は単純に見えますが、実際には今日の数学で解決するのが非常に難し...

Metaが新しいモバイルAIジェネレーターを公開、5分でAIアプリを作成、AndroidとiOSの両方をサポート

最近、毎年恒例の PyTorch 開発者会議が開催されました。このカンファレンスでは、Meta(旧F...

AI技術の自立を実現するために、国内のディープラーニングフレームワークは3つの大きな課題に直面している

「ディープラーニングフレームワークは人工知能技術システムの真ん中にあり、下のチップと上のアプリケーシ...

見逃しているかもしれない 3 つの重要な AI トレンド

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

顔認証決済には注意しましょう。お金を盗まれる可能性があります

受動的な収集は防御が難しい一部の学校では、この技術を搭載したカメラを使用して、生徒の授業状況を監視し...

ソフトウェアは世界を飲み込んでいるが、AIはソフトウェアを飲み込んでいる

COVID-19が世界を席巻したとき、人工知能はなぜ大きな空白を埋めることができるのか?教育、セキュ...

あなたの AI は規制に対応できる準備ができていますか?

現在、人工知能 (AI) に関する同様の規制が世界中の複数の地域で施行され始めており、GDPR に関...

マシンビジョンはインダストリー4.0とモノのインターネットの重要な技術です

[51CTO.com クイック翻訳] マシンビジョンは、機械学習と商用グレードのハードウェアを組み合...

「顔認識」は諸刃の剣です。どうすればそれを利用して被害を回避できるのでしょうか?

[[356811]]顔認識は人工知能の画期的な技術として、大規模に導入され始めています。顔認証ロッ...

2020 年の DevOps の 7 つのトレンド

[51CTO.com クイック翻訳] 権威ある調査によると、2017 年に DevOps は市場で ...

...

UBS: AI需要は2022年から2027年の間に年平均61%の成長率で増加すると予想

金融投資機関UBSは最近、人工知能端末の需要に関する長期予測を、2020年から2025年までの年平均...

...