ReAct: 言語モデルにおける推論とアクションを組み合わせてよりスマートな AI を実現

ReAct: 言語モデルにおける推論とアクションを組み合わせてよりスマートな AI を実現

本日は、Google Research とプリンストン大学の研究者グループが言語モデルにおける推論と動作を組み合わせる可能性を探求した論文「REACT: 言語モデルにおける推論と動作の相乗効果」を紹介します。大規模言語モデル (LLM) の推論 (思考連鎖の促進) とアクション (行動計画の生成) の機能は別々のトピックとして研究されてきましたが、両方の機能が 1 つのシステムに統合されたのは今回が初めてです。 ReAct フレームワークにより、仮想エージェントは Web や SQL データベースへの接続などのツールを使用できるようになるため、ほぼ無制限の拡張が可能になるため、これは重要な論文であると思います。

推論と行動の力

人間の知能は、タスク指向の行動と次のステップに関する推論のシームレスな組み合わせによって特徴付けられます。この能力により、予期せぬ状況にも適応しながら、新しいタスクを素早く学習し、信頼できる決定を下すことができます。 ReAct は、言語モデルでこの相乗効果を再現し、インターリーブ方式で推論手順とタスク固有のアクションを生成できるようにすることを目的としています。

ReActの仕組み

ReAct は、大規模な言語モデルに、特定のタスクの言語推論履歴のステップとアクションを生成するよう促します。これらのプロンプトは、モデルの思考とアクションの生成を導く少数のコンテキスト例で構成されています。コンテキストの例を下の図に示します。これらの例は、エージェントを循環的なプロセス(思考の生成、アクションの実行、そしてそのアクションの結果を観察すること)に導きます。 ReAct は推論トレースとアクションを組み合わせることで、モデルが動的推論を実行できるようにします。これにより、高レベルの計画を生成し、外部環境と対話して追加情報を収集することもできます。

アプリケーションと結果

研究者らは、質問への回答、事実の検証、テキストベースのゲーム、Web ナビゲーションなど、さまざまな言語推論および意思決定タスクに ReAct を適用しました。結果は優れており、ReAct は解釈可能性と信頼性の点で他の最先端のベースラインを一貫して上回っています。

質問応答と事実検証のタスクにおいて、ReAct は単純な Wikipedia API と対話することで、推論における一般的な幻覚とエラー伝播の問題を克服します。推論の痕跡のないベースラインよりも解釈しやすい、タスクを解決するための人間のような手順を生成します。インタラクティブな意思決定ベンチマークでは、ReAct は、コンテキスト例が 1 つまたは 2 つしかない場合でも、模倣学習および強化学習の方法を大幅に上回ります。

推論、行動、観察のステップを織り交ぜることで、ReAct の根拠と信頼性は向上しますが、この構造によって推論ステップを策定する際の柔軟性が制限され、低下するため、一部のタスクでは思考連鎖プロンプトよりも推論エラー率が高くなります。

推論と行動の重要性

研究者らは、さまざまなタスクにおける推論と行動の重要性を理解するためにアブレーション実験も行った。彼らは、ReAct の内部推論と外部アクションの組み合わせが、推論またはアクションのいずれか一方のみに焦点を当てたベースラインよりも一貫して優れていることを発見しました。これは、より効果的な意思決定のためにこれら 2 つのプロセスを統合することの価値を強調しています。

今後の方向性

ReAct は有望な結果を示していますが、まだ改善の余地があります。研究者らは、ReAct をスケールアップしてより多くのタスクをトレーニングおよび操作し、強化学習などの補完的なパラダイムと組み合わせることを提案しています。さらに、より多くの人間が注釈を付けたデータを使用してモデルを微調整すると、パフォーマンスがさらに向上します。

結論は

ReAct は、よりスマートで汎用的な AI システムの開発に向けた一歩であり、Langchain ライブラリの非常に便利なエージェント機能も強化します。言語モデルにおける推論と動作を組み合わせることで、さまざまなタスクでパフォーマンスが向上し、解釈可能性と信頼性も向上することが実証されました。 AI が進歩し続けるにつれて、推論と動作の統合は、より有能で適応性の高い AI システムを作成する上で重要な役割を果たすようになります。

論文の宛先:

<<:  Stack OverflowがAI搭載製品「OverflowAI」を発表

>>:  GPT-4 よりも優れており、クローズドソース モデルよりも優れています。コードラマの謎のバージョンが公開

推薦する

AIは世界を席巻しており、すべての関係者がアプリケーションの導入に力を入れており、競争は激化している。

テンセントが最近テスラの株式5%を購入したというニュースは業界で大きな話題を呼び、人工知能(AI)分...

エイリアンがトレンド検索リストのトップに!米国が初のUFO公聴会を開催

昨日、米国議会の公聴会が中国国内の複数のメディアのトレンド検索のトップに躍り出た。 これを一言でまと...

...

スマートホームデバイスにおける ML と IoT の融合

人工知能は定期的に盛んに研究されている技術です。世界中の研究者が、AI の応用と実装をより迅速かつ効...

ビッグデータと人工知能の時代において、監査人は依然としてアイデアを持つ必要があるのでしょうか?

誰もが考えを持っており、監査人もそれぞれ心の中にさまざまな考えを持っています。表面的には、監査スキル...

世界人工知能会議の最高栄誉である2020年SAIL賞のトップ30プロジェクトが発表されました

世界人工知能会議の最高賞であるSAIL賞(スーパーAIリーダー)は、「卓越性を追求し、未来をリードす...

...

医療用人工知能の分野は新たな状況を迎え、テクノロジー大手は積極的に導入を進めている。

報告書によると、医療における人工知能の主な応用分野の一つである医療ロボットの市場規模は2019年に4...

製造業における人工知能の8つの応用シナリオ

人工知能の概念は、60年以上前の1950年代に初めて提案されました。しかし、モノのインターネット、ビ...

...

不妊治療の新たな夜明け:AI

世界初の試験管ベビーは1978年に英国で誕生した。それ以来、人工生殖技術は継続的に改良されてきました...

ヴェノムのように変形・修復可能なロボットが登場、1.5mmの亀裂も楽々通過

映画「ヴェノム」を見たことがある友人なら、「シンビオート」が液体の形で現れることを知っているでしょう...

...

人工知能認識により、物流会社はダブルイレブンの注文に簡単に対応できます。

2018年のダブルイレブンは、「富豪」に対する私の認識を新たにしました。その前に、アリババの張勇は...

...