調査会社ガートナーの調査によると、2021年までに世界中の組織が人工知能を通じて約3兆ドルのビジネス価値を生み出すことになるでしょう。
AI テクノロジーが将来、職場で人間に完全に取って代わる可能性があると言う人もいます。少なくとも近い将来においては、AI を使用して既存の機能を強化および拡張する企業の価値は、人間が行う作業の価値をはるかに上回るでしょう。 ガートナーは最近のレポートで、2021年までに世界中の組織がAIを活用して意思決定をサポートし、効率性を向上させ、新しいアプリケーションを実現することで、2.9兆ドルのビジネス価値と約62億時間の生産性向上を生み出すと予測しました。 ガートナーのリサーチ担当副社長スベトラーナ・シキュラー氏は、人工知能の活用は従業員の仕事を置き換えるものではなく、人工知能と人間の知恵を組み合わせることで、より多くのビジネス価値を生み出すものだと語った。 「AIが仕事を奪うという話はよく聞く」と同氏は言う。「実際には、企業にとって最大の利益は、すべての仕事を機械に任せるのではなく、人間と機械を組み合わせることから生まれるだろう」 Sicular は、AI テクノロジーが進歩するにつれて、組織は次の 4 つの方法のうち 1 つ以上でメリットを得られると予想しています。 1. バトンモデルを採用する 今後数年間の AI の主な使用例は、現在は人間のみが処理している幅広いプロセス内のタスクの自動化です。組織は、自動化によって最もメリットが得られる部分と、人間に任せる必要がある部分を見極めるために、主要なプロセスの多くを一連の小さなタスクに分割するだろうと、Scular は述べています。 目標は労働者を置き換えることではなく、AI を使用して既存のプロセスを強化することです。一例としては、画像認識の分野などにおける放射線画像の認識のための人工知能の利用が挙げられます。 AI が放射線科医に取って代わることができるという懐疑論が広まっているが、実際には AI の使用は放射線科医のワークフローの改善、情報の統合の改善、そして最終的には患者へのより良いケアの提供に役立つ可能性がある。 「バトンパスモデルは、データ集約型の状況で特に効果的です」とシキュラー氏は言う。「企業が大量のデータを持っている場合、AIは不確実性を軽減できます。」 2. 物事を次のレベルへ進める AI は、たとえば、誰に販売するか、何をするか、次にどこに向かうかなどについて正確な洞察を提供することで、企業に新たな機会をもたらすことができます。 「AIは、人間が新しいことをするのに役立つパターンを見つけることができます」とシキュラー氏は言う。AIは何百万ものデータポイントをふるいにかけ、企業が手作業で得るのはほぼ不可能な洞察を可能にし、人間の能力をより高いレベルに引き上げるとシキュラー氏は指摘した。 Sicular 氏は、AI を活用して顧客が車両の問題をより迅速かつ正確に診断できるように支援している企業の例を挙げました。同社には、車両のテレメトリ、メンテナンス記録、マニュアル、その他の修理データに関連する数億件の文書を含むデータベースがあります。 会社が新たな障害に関する情報を受け取ると、その問題の原因として最も可能性が高い 5 つまたは 6 つをすぐに特定できるため、技術者は他の潜在的な原因を探すのに時間を費やすのではなく、問題の解決に集中できます。 「AIは技術者に特定の分野に集中するよう指示することができます」と彼女は言う。「つまり、AIは基本的に、得意ではない分野ですべての人の能力を高めているのです。」 3. 残りの作業を完了する 一定のしきい値を超えると、データ分析を通じて非常に高い精度を得るには通常コストがかかります。その結果、一部の企業では、最初の準備作業に AI を使用し、残りの作業を人間の専門家に任せています。 シキュラー氏によると、オンラインパーソナルスタイリングサービス「スティッチ・フィックス」は顧客に対してこのアプローチを採用しており、スタイリストが顧客の特徴や独自のサイズやスタイルに基づいて慎重に服を選んでいるという。 これを実現するために、Stitch Fix は人工知能ツールを使用して在庫全体を調べ、顧客の選択に一致する比較的絞り込まれたアイテムのリストを作成します。その後、同社はスタイリストとデザイナーにそのリストを確認してもらい、5 つのアイテムを厳選して顧客に送ります。パーソナライズをさらに高めるために、人間による注釈が付けられることもあります。 理論上は人工知能が最終的な選択を行えるが、スティッチ・フィックスはより良い仕事をするために人間に頼っている。 「スティッチ・フィックスは、AI を活用して個人向けのファッション推奨を民主化しています」とシキュラー氏は言う。「同社は AI を使って初期選択の精度を高めており、その作業は人間のスタッフが行っています。」 4. 協力関係を築く 今後数年間で、組織は AI の導入なしには実現できない機能やアプリケーションを AI で実現できるようになると予想しています。共生とは、建物や橋などの物理的な物体の形状の開発やテストなど、特定の目的のために AI アルゴリズムを使用することだとシキュラー氏は述べた。 ドイツのハンブルクにあるフィルハーモニーホールは、人工知能の共生利用の一例です。人工知能アルゴリズムは、実際に製造されメインコンサートホール内に配置されてしまう前に、10,000 枚を超える独自の音響タイルを設計しテストするために特別に使用されました。シキュラー氏は、これらのアルゴリズムは特定の独自の目的のために開発されたものであり、この文脈で AI を使用する共生的な性質を反映したアルゴリズムがなければ、これらの音響タイルを展開することはできないかもしれないと述べた。 全体として、組織全体での AI の導入はまだ初期段階にあります。 AIの活用を検討し始める企業が増えるにつれ、AIから価値を引き出す最善策は、AIと人間の知性を組み合わせることだと彼女は述べた。 |
<<: 人工知能の出現は教育にどのような影響を与えるのでしょうか?
>>: AIが使われるようになった今、データセキュリティではこれら4つの大きな問題を避けることはできない
この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...
この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...
機械学習の分野でよく使われる分類学習タスクでは、訓練された分類モデルの精度と高い信頼性を確保するため...
ロボット工学は、特にスマートテクノロジーと組み合わせると、無限の可能性を秘めたテクノロジーです。近年...
[[333668]]数か月に及ぶ極度の不確実性、経済の閉鎖、孤立の後、ようやくゆっくりと経済が機能し...
[[238335]]ビッグデータダイジェスト制作編纂者: Shijintian、Ni Ni、Hu J...
TSMCのCEOである魏哲佳氏は、TSMCの7nm生産能力の増加が予想よりも遅いという最近の憶測を否...
COVID-19の流行は深刻ですが、多くの新しい技術の助けにより、予防と制御の対策は何年も前と同じ...
AI の恩恵を受ける業界はどれでしょうか?人工知能と機械学習はすでにさまざまな業界に導入されており...
組み込み人工知能とは、組み込み環境で人工知能を実行することです。アルゴリズムモデルは以前と同じですが...
データの不足から現在では大量のデータが存在するまで、近年では利用可能なデータの量が飛躍的に増加し、ビ...
最近、北京で開催された2019 Intel Innovation Accelerator AI パー...
[51CTO.comより引用] 近年、わが国の興行収入市場は飛躍的に成長し、2011年には150億ド...
ただの楽しみのために、Go 言語を学ぶことにしました。新しい言語を学ぶ最良の方法は、深く学び、できる...