OpenAIの共同創設者Karpathyがアルパカに恋をする: 赤ちゃんLlama2を実装する純粋なCコード、MacBookが動作可能、1.6kの星を獲得

OpenAIの共同創設者Karpathyがアルパカに恋をする: 赤ちゃんLlama2を実装する純粋なCコード、MacBookが動作可能、1.6kの星を獲得

今週、Meta のオープンソース Llama2 が AI コミュニティ全体で人気を博しました。

その結果、今年初めにOpenAIに復帰したテスラの元AIディレクター、アンドレイ・カルパシー氏でさえも黙ってはいられない状況になっている。彼は週末の時間を利用して、Llama2 に関する興味深いプロジェクト「llama2.c」を作成しました。

写真

GitHub アドレス: https://github.com/karpathy/llama2.c

それは正確には何ですか?彼によると、「llama2.c」を使用すると、PyTorch でベビー Llama2 モデルをトレーニングし、依存関係のない純粋な C で約 500 行のファイルを使用して推論を実行できるとのことです。さらに、この事前トレーニング済みモデルは、M1 チップを搭載した MacBook Air で fp32 浮動小数点精度を使用して 18 tok/s の速度でストーリーをサンプリングできます。

Karpathy 氏は、「llama2.c」は、上級オープンソース コミュニティ開発者の Georgi Gerganov 氏によって作成され、MacBook で 4 ビット量子化を使用して第 1 世代の LLaMA モデルを実行できるllama.cpp触発されたものであると紹介しました。

「llama2.c」の場合、そのトレーニング コードはnanoGPTから変更されており、Llama2 アーキテクチャのモデルをトレーニングするために使用されます。コアは、以下に示すように run.c で記述された C 推論エンジンですが、現時点では製品レベルのライブラリではありません。以下は推論コードです。

写真

完全なコードアドレス: https://github.com/karpathy/llama2.c/blob/master/run.c

この結果に Karpathy 氏は驚きました。それは、(M1) CPU 上の純粋なシングルスレッド C で、fp32 トランザクション レートでより小さな (O (~10MB)) モデルを推論できるという点です。

もちろん、彼は最小のLlama2モデル(70億パラメータ)で推論を実行しようとはしなかったが、非常に遅くなることは予想していたという。

写真

現在、Karpathy は、M1 MacBook Air 上で、fp32 浮動小数点精度と 100tok/s の速度で、15M パラメータを持つ 288 6 層 6 ヘッド モデルの推論を実行できます。

その後、Karpathy 氏はプロジェクトを更新し、「-O3」でコンパイルしました。これにより、M1 MacBook Air の tok/s が 18 から 98 に増加しました。これだけではありません。「-funsafe-math-optimizations」でコンパイルすると、tok/s が 315 に増加します。 gcc コマンドに文字を追加するだけで、速度が 17.5 倍に向上する可能性があるとのことです。

このプロジェクトの意義は何かと疑問に思うかもしれません。 Karpathy 氏の見解では、非常に小さなトランスフォーマーを使って興味深いことができる、より狭い領域 (ストーリーの生成など) がいくつかあるとのことです。

したがって、このような移植可能な純粋な C 実装は、適度なサイズのモデル (数千万のパラメータ) を簡単な方法で高いトランザクション レートで実行できるため、非常に便利です。

一部のネットユーザーは「llama2.c」の開発プロセスに非常に興味を持っています。多くの人がそのような考えを持っていますが、適切な時期を待っているだけです。彼らは、多くの作業が数日で完了できることに気づいていません。

Karpathy 氏は、float32 重みブロックとその上にある小さな推論コードを使用してストーリーを生成することに非常に興味があると答えました。そこで彼は土曜日の一日中(起きてから寝るまで)コードを書いてプロジェクトを機能させることに費やしました。

写真

さらに、カルパシー氏は解説ビデオも出す予定だと語った。

写真

プロジェクトの詳細

これまでのところ、「llama2.c」プロジェクトは GitHub で 1.6k スターを獲得しており、急速に成長しています。

写真

以下はプロジェクトの運用手順の簡単な紹介です。

純粋な C でベビー Llama2 モデルを実行するには、次のモデル チェックポイントが必要です。 TinyStories データセットでトレーニングされた 15M パラメータ モデル (約 58MB) をダウンロードし、デフォルトのチェックポイント ディレクトリに配置します。

 wget https://karpathy.ai/llama2c/model.bin -P out

次に、C コードをコンパイルして実行します。

 gcc -O3 -o run run.c -lm ./run out/model.bin

これは単なる生のトークンのストリームであることに注意してください。残念ながら、C コード (30 行のみ) を単純な変換ラッパーで実行する必要があります。

 pip install sentencepiece python run_wrap.py

最後にテキスト ストリームが表示されます。 Karpathy の M1 MacBook Air では約 100 tok/s で動作しますが、これはスーパーネイティブ fp32 シングルスレッド C コードとしては悪くありません。サンプル出力を以下に示します。

写真

<<: 

>>:  フォレスター:生成型AIと会話型AIが2023年のトップ10新興テクノロジーを独占

ブログ    
ブログ    

推薦する

...

ビッグデータが地球を救う10の方法

近年、多くの物事の成功はテクノロジーの進歩によるものと言えます。その一つは、気候変動のリスクから地球...

AIが医療画像診断を強化し、潜在的な病気が隠れる場所をなくす

【51CTO.comオリジナル記事】 [[376669]]医療は人々の生活に関わる最も重要な問題の一...

人工知能は多くの仕事を置き換えるでしょう。将来の子供たちの競争力は成績とは全く関係ないかもしれません。

[[379145]]昨日、家で強宝と一緒に『様々な職業』という本を読んでいました。突然思いついて、...

...

...

合成データは AI/ML トレーニングの未来を推進するでしょうか?

人工知能や機械学習 (AI/ML) をトレーニングするために現実世界のデータを収集することは、時間が...

...

スマートロボットについて知っておくべきことすべて

スマートロボットは、タスクをより効率的かつ正確に実行し、生産性を向上させ、人的エラーを削減するように...

16歳の高校生が13,000行以上のコードでC++機械学習ライブラリをゼロから作成した

コンピューターが大好きなティーンエイジャーは、16歳にしてすでに、広東語プログラミング言語の開発、K...

...

人工知能の急速な発展により、どのようなビジネス分野に浸透しているのでしょうか?テレマーケティングの将来はどうなるのでしょうか?

最近、人工知能の開発はますます激しくなってきています。ますます多くの新製品が私たちの生活に入ってきて...

...

自動運転の時代が加速するにつれ、支援システムは自動車の標準装備になるかもしれない

近年、自動運転分野で優位に立ち、自動車産業の発展の主導権を握るために、多くの国が自動運転の路上テスト...