エッジ AI がインダストリー 4.0 の成果を推進する方法

エッジ AI がインダストリー 4.0 の成果を推進する方法

物理的な世界を中心としたこれまでの産業革命とは異なり、第 4 次産業革命によって導入されたデジタル要素は、製造業界全体に新たなイノベーションとスマートなソリューションをもたらしています。最近のネットワーク接続の進歩により、コンピューティング、IoT およびセンサー技術、自動化およびロボット工学、人工知能および機械学習 (AI/ML) などのデジタル化が推進されています。

製造業者にとって、インダストリー 4.0 は、サプライ チェーンの運用に関する洞察と可視性の向上、危険な状態の削減、作業者の安全性の向上、予測メンテナンスの実行による機器のダウンタイムの削減など、無限の可能性を生み出します。

このビジョンを実現するには、メーカーはさまざまなセンサー、アクチュエータ、デバイスをすべて理解し、オペレーターが使用するアプリケーション、ダッシュボード、アラート ソリューションに情報を提供するために分析を実行する場所を決定する必要があります。今日のインダストリー 4.0 の主な障害はユースケースとは関係なく、すべての物理機能とデジタル機能間の相互運用性を最も効率的かつ経済的な方法で確保する方法に重点が置かれています。

相互運用性を実現するための現在の考慮事項

製造業者は、さまざまなセンサー、システム、資産から生成される膨大な量のデータを保有しています。しかし、生の形式では、すぐに分析できない場合、このデータは価値がありません。この規模のデータを分析するには、データ ソースに緊密に接続された人工知能と機械学習の力が必要です。

ガートナーの 2019 年のトップ 10 戦略的テクノロジ トレンドでは、2028 年までにエッジ デバイスへのセンサー、ストレージ、コンピューティング、高度な AI 機能の組み込みが着実に増加すると予測されています。

この成長により、数千種類の「スマート」エッジ デバイス (大型のもの、小型のもの、他よりも高い電力要件のあるもの) を備えた業界が生まれる可能性があります。これらのデバイス上で実行する必要がある数百、あるいは数千もの AI/ML モデルと組み合わせると、すぐに管理上の悪夢になる可能性があります。

多くの組織では、視覚的な品質検査や予測メンテナンス監視など、特定のエッジ アプリケーションの個別の問題を解決する独自の垂直「ソリューション」を購入することをデフォルトとしています。このアプローチは短期的なニーズには対応できるかもしれませんが、課題の増大につながります。独自のシステムやポイント ソリューションは、既存のワークフローやテクノロジ スタックにうまく統合されない場合があり、最終的にはユーザー コミュニティの導入障壁や摩擦の原因となる可能性があります。

さらに、今日の分析指向のソリューションの多くでは、分析や機械学習のために、センサーやその他のソースから中央データセンターやクラウド コンピューティング環境にデータを送信する必要もあります。この設計パターンは、転送されるデータ量の増加と決定の遅延により非常にコストがかかり、新たなセキュリティの脆弱性も生じる可能性があります。

要約すると、今日、多くの製造業者は、工場全体で AI/ML 機能を統合するために非効率的で拡張性のないソリューションとアプローチに依存しており、その結果、相互運用性が悪く、時には競合するテクノロジーさえある機械、ツール、システムが混乱することになります。

相互運用可能な AI/ML 対応システムの構築

では、相互運用性を構築し、インダストリー 4.0 を実現するための鍵は何でしょうか? 最初のステップは、既存の資産を使用してプロセスを合理化し、達成したい成果を達成するための最も効率的で水平的かつスケーラブルなアプローチを決定することです。

現在、何らかの形の組み込みコンピューティングを備えた資産が数十億個インストールされており、豊富で洞察に富んだデータを収集しています。理想的には、データはデバイス上またはその近くでリアルタイムに分析され、データ転送を最小限に抑えてネットワークとセキュリティの問題やコストを回避し、既存の運用システムと統合して中断を最小限に抑え、価値を高める必要があります。

次の疑問は、相互運用性を実現するために、これらすべての資産に AI/ML を効果的に統合するにはどうすればよいかということです。ガートナーは、上記のインストールベースデバイスの多くが AI コードで後付けされるようになると予測しています。さらに、AI 対応ソフトウェアのコンピューティング環境を作成するために、組み込みテクノロジーを使用して何百万もの資産が製造されるようになります。

ガートナーによると、より効果的なアプローチは、AI/ML モデルを、高速な分析と処理が必要なユーザーまたはデバイスのできるだけ近くに配置して、これらの AI/ML 生成予測をカスタムまたは COTS アプリケーションとダッシュボード システムに統合することです。エッジ デバイスに展開された AI/ML モデルを管理および監視する商用ソリューションを使用すると、潜在的な混乱に秩序をもたらすことができます。

垂直的な独自システムを選択するアプローチと比較して、中央プラットフォームを通じてすべてのデバイス、センサー、エッジ資産に AI/ML 機能を展開すると、AI/ML 主導のソリューションを構築する開発プロセスが加速されるだけではありません。また、現在のアーキテクチャのギャップを埋めて、システム間の相互運用性を確立します。この相互運用性により、物理的な洞察とデジタルの洞察の間の接続ポイントが形成され、インダストリー 4.0 が実現します。

要約する

現在使用されているテクノロジーとインダストリー 4.0 のテクノロジーのギャップを埋めるために、メーカーは大規模な AI/ML 分析を可能にする新しい相互運用性アプローチを検討する必要があります。各資産タイプを解決すべき新しいパズルとして見るのではなく、各資産タイプを一度に解決できるパズルの一部として見る方が適切です。

統合ファーストのアプローチを採用し、すべての AI/ML 関連資産を一元管理することで、メーカーは将来の開発に対する柔軟性を維持しながら、既存の資産から AI/ML によって生成された洞察を抽出できます。さらに重要なのは、製造施設全体に AI/ML 主導の洞察を提供するこのアプローチにより、インダストリー 4.0 の成果を推進するデータ主導のソリューションを実現するために必要な相互運用性が生まれることです。

<<:  インテルラボ、テキストプロンプトに基づいて360度パノラマ画像を生成する新しいAI拡散モデルをリリース

>>: 

ブログ    
ブログ    

推薦する

AIとMLに対する5つの潜在的な致命的な脅威とその解決方法

[[267669]] [51CTO.com 速訳] 人工知能(AI)と機械学習(ML)は、この時代の...

自動運転のための2Dおよび3D視覚認識アルゴリズムについて話す

環境認識は自動運転における最初のリンクであり、車両と環境を結び付けるものです。自動運転システムの全体...

Madlib を使用して「機械学習」で KNN を学習する

序文機械学習(ML)は、教師あり学習、教師なし学習、半教師あり学習などに分けられます。 1.1 教師...

Google がニューラル ネットワーク コーデック SoundStream を発表、オープンソース プロジェクト Lyra に統合される予定

Google は最近、エンドツーエンドのニューラル オーディオ コーデックである SoundStre...

人工知能に関する3カ年国家戦略が発表されました。8つの主要分野が注目されます。

昨日、工業情報化部が突然、人工知能に関するもう一つの重要な赤字文書を発行しました!文書では、2018...

顔認識は「スマート交通」に役立ち、3つの側面でその価値を実証する

近年、都市化の急速な発展と都市人口の継続的な増加により、都市交通の重要性がますます高まっています。わ...

ジェネレーティブ AI と自動化: 未来のデータ センターを加速

自動化と生成型人工知能 (GenAI) の時代において、「データセンター」の本当の意味を再考する時が...

量子コンピューティングは人工知能をどう変えるのか

量子コンピューティングと人工知能は、現代の最も破壊的なテクノロジーの 2 つです。 2 つのテクノロ...

ユニバーサルデータ拡張技術、ランダム量子化はあらゆるデータモダリティに適用可能

自己教師あり学習アルゴリズムは、自然言語処理やコンピュータービジョンなどの分野で大きな進歩を遂げまし...

国内の多くの大学が共同でオープンソースコミュニティLAMMを構築しています。マルチモーダル言語モデルファミリーに参加する時が来ました

ChatGPTの登場以来、大規模言語モデル(LLM)は飛躍的な発展を遂げ、自然言語に基づく人間とコン...

人間の姿勢評価技術の開発と実装

[51CTO.com クイック翻訳]関連調査レポートによると、デジタルフィットネス市場の規模は202...

本当に感動しました! Sora はまだリリースされていませんが、すでにお金を稼いでいる人がいます。

みなさんこんにちは。私はXuanyuanです。 Sora の人気はここ数日続いています。今日は、So...