機械学習の再考: 人工知能はどのようにして「記憶を失う」ことを学ぶのか?

機械学習の再考: 人工知能はどのようにして「記憶を失う」ことを学ぶのか?

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式サイトにアクセスして許可を申請してください。

機械学習は、あらゆる分野で貴重なツールとなっています。機械学習は、人々が見落としがちな詳細を発見し、意思決定を支援するシステムの構築によく使用されます。驚くべき結果が得られましたが、すでに形成されたモデル内の特定のモジュールやデータ レコードをどのように変更または削除するかなど、問題点も数多くあります。

一部の学者は、ほとんどの場合、修正は再トレーニングを意味することが多いが、それでも疑わしいデータが含まれるのを避けることは不可能であると述べた。このデータは、システム ログ、画像、顧客管理システムなどから取得される場合があります。特に欧州の GDPR の導入により、モデルの忘却機能に対する要件が厳しくなりました。企業が解決策を見つけられなければ、コンプライアンス違反の罰則を受けることになります。

実際、完全な再トレーニングにはコストがかかり、機密データの問題を解決できる可能性は低いです。したがって、再トレーニングされたモデルが完全に正確かつ効果的であることを証明することはできません。

これらの問題を解決するために、学者たちは、データベースを分解したり、アルゴリズムを調整したりといった特殊な技術を使ってモデルに選択的健忘を誘発する「機械学習の学習放棄」と呼ばれる技術を定義しました。名前が示すように、機械学習のデラーニングは、モデル内の暗黙的なデータを保護するために、トレーニングされたモデルから特定のデータトレーニング効果/特定のパラメータを忘れさせることです。

1.モデルを破る

機械学習の魅力は、膨大な量のデータを調べ、人間の認知範囲を超えた複雑な関係性を明らかにする能力にあります。同時に、この技術のブラックボックス性により、学者はモデルを変更する際に非常に慎重になります。結局のところ、特定のデータポイントがモデルのどこにあるかを知ることは不可能であり、データポイントがモデルに直接どのように影響するかを明確に知ることは不可能です。

もう 1 つの状況は、データに外れ値が現れた場合、モデルはそれを特にしっかりと記憶し、全体的な効果に影響を与えるというものです。

現在のデータ プライバシー ツールは、データを感度低下させながらモデルをトレーニングすることができ、データをローカルに残さずに共同トレーニングを実行することもできます。おそらく、機密データを null 値に置き換えてノイズを導入し、機密データを隠すことができる可能性があります。しかし、これらでは問題を根本的に解決することはできません。要素を置き換えて重要なデータを保持する差分プライバシー技術でさえ、選択的忘却の問題を解決するには不十分です。たとえば、再トレーニングは必要ないが、自分のデータをデータベースから削除することを要求する「機密性の高い」人がいる場合など、1 つのケースまたは少数のケースでのみ機能する可能性があります。削除リクエストがどんどん増えていくと、フレームワークの「忘却モデル」はすぐに崩壊します。

したがって、プライバシー技術と機械学習復号化技術は、問題を解決するという点では同等ではありません。

検証不可能な匿名性や差分プライバシー技術によるデータ削除の問題は、理論的な問題であるだけでなく、深刻な結果をもたらします。研究者たちは、いわゆる汎用アルゴリズムやモデルから機密データを抽出できることを実証しました。たとえば、2020年に学者たちは、個人のアイデンティティや著作権情報を含むトレーニングデータをGPT-2から取得できることを発見しました。


2選択的健忘

機械学習モデルが選択的忘却の能力を獲得できるようにするには、次の 2 つの重要な問題を解決する必要があります。

  • 各データ ポイントを使用して機械学習モデルを構築する方法を理解する。
  • ランダム性が空間に与える影響。たとえば、場合によっては、データ入力の比較的小さな変更が異なる結果を生み出す理由を理解する必要があります。

この方向での最初の研究は 2019 年に発表されました。当時、ニコラス・ペパーノットは機械学習用のデータを複数の独立した部分に分割することを提案しました。多数のミニデータを確立することで、特定のコンポーネントのみを削除して再トレーニングし、それを完全なデータセットに再度挿入して、完全に機能する機械学習モデルを生成することが可能になります。

具体的な操作プロセスは、まずトレーニング データを重複しない複数のスライスに分割し、1 つのスライスに 1 つのトレーニング ポイントのみが含まれるようにします。次に、各スライスでモデルを個別にトレーニングし、スライスを結合してデータ要素を正常に削除します。したがって、トレーニング ポイントを忘れるように要求された場合、影響を受けるモデルのみを再トレーニングする必要があります。スライスはトレーニング セット全体よりも小さいため、忘却のコストが削減されます。

この方法は、Nicolas Papernot によってSISA (Sharded、Isolated、Sliced、Aggregated) と名付けられました。完全な再トレーニングと部分的な再トレーニングのベースラインと比較して、SISA は精度と時間コストのトレードオフを実現しました。単純な学習タスクでは、Purchase データセットでは 4.63 倍、SVHN データセットでは 2.45 倍になります。

同時に、著者らは、この概念は有望ではあるものの、限界もあることを認めている。たとえば、スライスあたりのデータ量を減らすと、機械学習に影響が及び、結果の品質が低下する可能性があります。さらに、この技術は必ずしも宣伝どおりに機能するとは限りません。

現在、機械学習による忘却に関する研究はまだ初期段階にあります。研究者やデータ サイエンティストが、データを削除することによる全体的なモデルへの影響について理解を深めるにつれて、機械学習フレームワークとアルゴリズムによって研究者がレコードまたは単一のデータ ポイントを削除し、最終的に関連データを「完全に忘れた」効果的なモデルを取得できるようにすることを目的とした成熟したツールが登場します。

<<:  研究者はディープラーニングを使用して巡回セールスマン問題を解決する上でどの程度進歩しましたか?

>>:  「宝くじ仮説」の著者による新しいPyTorchライブラリは人気があり、モデルのトレーニングが2〜4倍高速化されます。

ブログ    

推薦する

米国の委員会は「道徳的義務」を理由にAI兵器の開発を禁止すべきではないと勧告した。

[[378901]]米政府の委員会は報告書草案の中で、米国は人工知能(AI)を搭載した自律型兵器の...

機械学習の基礎知識がゼロでも、TensorFlow で画像認識システムを構築する方法をお教えします (パート 2)

[[182024]]これは Wolfgang Beyer によるブログ投稿です。この論文では、Te...

2022年の政府活動報告を聞いた後、人工知能業界が注目するべき点は以下のとおりです。

2022年全国人民代表大会と中国人民政治協商会議が開幕した。3月5日には2022年政府活動報告が発...

工業情報化部:大規模モデルアルゴリズム技術のブレークスルーの促進とスマートチップの計算能力の向上に重点を置く

10月20日、国務院新聞弁公室公式サイトによると、工業情報化部の報道官、運営監視調整局局長の陶青氏は...

RDA を使用してデータの問題を解決し、AIOps の実装を加速する方法

【51CTO.com クイック翻訳】ロボティックデータオートメーション (RDA) とは?ロボティッ...

K平均法アルゴリズム Java実装 クラスタ分析 681 三国志の将軍

1. k-meansアルゴリズムの紹介: k-means アルゴリズムは入力量 k を受け取り、n ...

海外の子どもたちはみんなプログラミングを学んでいますが、彼らが学んでいるのはプログラミングではなく、プログラミング的思考なのです!

人工知能が話題になるにつれ、コーディングも親たちの注目の的になっています。実は、子どもにプログラミン...

職場は「理想の街」になり得るか?企業と従業員の両方にAIを活用した自動化が必要

従業員が複雑なタスクに圧倒され、毎日同じ作業を繰り返すうちに徐々に疲れ果てていく一方で、企業も業務プ...

AIは自分が生成したものを理解できるのか?GPT-4とMidjourneyを試した後、誰かがこの問題を解決した

ChatGPTからGPT4、DALL・E 2/3からMidjourneyまで、生成AIはこれまでにな...

DeepMap COO 羅偉氏との独占インタビュー:自動運転の時代に、スタートアップは高精度地図の分野でどのように躍進できるのか?

最近、シリコンバレーの高精度地図サービスプロバイダーであるDeepMapは、Accelが主導し、エン...

数学的能力はChatGPTを超え、700億のオープンソース大規模モデルが人気:AIを使用してAIを微調整、Microsoftの中国人チームが制作

AI生成の指示を使用してAlpacaモデルを微調整すると、数学的能力はChatGPTを超える—— M...

...

...

AIファースト戦略はどこから始まるのでしょうか?

[[393200]] [51CTO.com クイック翻訳]人工知能は企業に競争上の優位性をもたらし...