「宝くじ仮説」の著者による新しいPyTorchライブラリは人気があり、モデルのトレーニングが2〜4倍高速化されます。

「宝くじ仮説」の著者による新しいPyTorchライブラリは人気があり、モデルのトレーニングが2〜4倍高速化されます。

さまざまなタスクに人工知能を導入する企業が増えるにつれ、AI モデルのトレーニングはコストがかかり、難しく、時間がかかることがすぐにわかりました。

MosaicML という企業は、こうした新たな課題に対処するための新しい方法を見つけることを目指しています。最近、MosaicML は、モデルのトレーニングを高速化し、コストを削減し、よりパフォーマンスの高いモデルを取得することを目指して、効率的なニューラル ネットワーク トレーニング用の PyTorch ライブラリ「Composer」をリリースしました。

Composer は PyTorch で記述されたオープンソース ライブラリであり、より優れたアルゴリズムを統合して、ディープラーニング モデルのトレーニングを高速化し、コストの削減と精度の向上を実現することを目的としています。現在、このプロジェクトは GitHub プラットフォームで 800 を超えるスターを獲得しています。

プロジェクトアドレス: https://github.com/mosaicml/composer

Composer には、ユーザーが独自のトレーニング ループに統合できる機能インターフェイス (torch.nn. functional に類似) があり、効率的なトレーニング アルゴリズムをトレーニング ループにシームレスに統合できる Trainer も含まれています。

プロジェクトでは 20 を超える加速方法が導入されており、数行のコードでユーザーのトレーニングに適用したり、組み込みの Trainer で使用したりできます。

一般的に、Composer にはいくつかのハイライトがあります。

  • コンピューター ビジョンと言語モデリングのネットワークのトレーニングを高速化する 20 以上の方法。 Composer が作業を行ってくれるので、研究論文を再現しようと時間を無駄にする必要はありません。
  • パフォーマンスを最大化し、効率的なトレーニングのためのベスト プラクティスを統合するように作成された、使いやすいトレーナーです。
  • すべての加速方法は関数形式で利用できるため、ユーザーは既存のトレーニング ループに統合できます。
  • できるだけ早く開始できるようにするための、堅牢で再現可能なベースライン。

では、Composer を使用することでどのようなトレーニング効果の向上が図れるのでしょうか?


複数のモデル ファミリのトレーニングにかかる​​時間とコストが削減されます。

プロジェクト情報によると、Composer トレーニングを使用すると、次のことが可能になります。

  • ResNet-101 は、ImageNet で 1 時間 30 分で 78.1% の精度に到達します (AWS では 49 ドル)。これは、ベースラインよりも 3.5 倍高速で、71% 安価です。
  • ResNet-50 は、ImageNet で 1 時間 14 分 (AWS で 40 ドル) で 76.51% の精度を達成しました。これは、ベースラインよりも 2.9 倍高速で、65% 安価です。
  • OpenWebText で 4 時間 27 分で GPT-2 のパープレキシティが 24.11 に改善されました (AWS では 145 ドル)。これはベースラインよりも 1.7 倍高速で、43% 安価です。

Reddit コミュニティでは、プロジェクト作成者の Jonathan Frankle 氏が発言し、Composer は宝くじ仮説に関する彼の研究の直接的な継続であると述べました。



2019 年、Frankle 氏と Carbin 氏の「宝くじ仮説: スパースで訓練可能なニューラル ネットワークの発見」が ICLR 2019 で最優秀論文賞を受賞しました。この論文では、Frankle らは、標準的な剪定手法によって、初期化後に効率的にトレーニングできるサブネットワークが自然に発見されることを発見しました。これらの結果に基づいて、2 人は「宝くじ仮説」を提唱しました。これは、高密度でランダムに初期化されたフィードフォワード ネットワークにはサブネットワーク (「当選券」) が含まれており、これを個別にトレーニングすると、同様の反復回数で元のネットワークに匹敵するテスト精度を達成できるというものです。

現在、フランクル氏は Mosaic 社の主任科学者であり、Composer の開発の原動力となっています。

今回、フランクル氏は、ディープラーニングの背後にある「数学」には神聖なものは何もないと述べた。 「数学」を根本的に変更してもまったく問題ありません(たとえば、重みを大幅に削除するなど)。本来得られるネットワークとは異なるネットワークが得られますが、元のネットワークが「正しい」ネットワークであるわけではありません。 「計算」を変更することで、ネットワークが同様に良くなり(たとえば、同じ精度)、さらに高速化されるなら、それは成功です。

ディープラーニングの背後にある「数学」を分析したい場合は、宝くじ仮説が一例です。 Composer には、これを行うための多数のテクニックがあり、それに応じた高速化も実現されています。

同時に、プロジェクトの著者らは Composer と PyTorch Lightning も比較しました。「PyTorch Lightning は、異なる API を持つ異なるトレーニング ライブラリです。実際、私たちは最初の Composer 実装を PTL 上に構築しました。」


PyTorch Lightningの作者であるウィリアム・ファルコン氏もその後の議論に登場したが、両者は合意に達しなかったようだ。

現在、Composer のトレーナーは、Resnet-50、Resnet-101、UNet、GPT-2 のアクセラレーションを含む多くのモデルに適用できます。



作者は、今後はViT、BERT、セグメンテーション、ターゲット検出など、より多くのモデルに拡張される予定だと述べています。

<<:  機械学習の再考: 人工知能はどのようにして「記憶を失う」ことを学ぶのか?

>>:  自動運転はどこへ行ってしまったのか?

推薦する

エンコーダー・デコーダーアーキテクチャを放棄し、エッジ検出に拡散モデルを使用する方が効果的です。国立国防科学技術大学はDiffusionEdgeを提案しました。

既存のディープ エッジ検出ネットワークは通常、マルチレベルの特徴をより適切に抽出するためのアップサン...

...

人工知能は労働力不足の重要な解決策とみられる

セリディアンは、無限の労働力を動員する力に焦点を当てた年次経営者調査の結果を発表しました。調査では、...

...

OpenAI、開発者向けGPTチャットボットAPIのメジャーアップデートを発表、価格を値下げ

OpenAI は本日、大規模言語モデル API (GPT-4 および gpt-3.5-turbo を...

AIアルゴリズムが軍用無人車両への中間者攻撃を検出

研究者らは、軍用無人車両に対する中間者攻撃を検出できる人工知能アルゴリズムを開発した。ロボットオペレ...

プログラマーでなくてもわかる「機械学習」の原理

機械学習とは何ですか?一般的なシナリオから始めましょう:ある日、マンゴーを買いに行ったところ、店員が...

リアルスティールの実写版!山東省の3人組のチームが、最小遅延12ミリ秒の史上最速ボクシングロボットを開発した。

この男性が自分の動きでロボットを操作している様子を注意深く見てください。彼がパンチを繰り出すと、ロボ...

テンセント、自動運転のリアルタイム制御を改善する新たな特許を発表

テンセントテクノロジー(深圳)有限公司は5月13日、人工知能ベースの自動運転方法、デバイス、設備、媒...

将来的にはAIを5Gネットワ​​ーク解析に活用できる

現在、5G に関するブログやベンダーの論文が数多くあり、新しいメディア伝送からギガビット速度、モバイ...

クラウドコンピューティングのディープラーニングプラットフォームを構築し実践する唯一の方法

クラウド ディープラーニング プラットフォームの定義 クラウド ディープラーニングとは何ですか? 機...

テクノロジーが建設業界に及ぼす8つの影響

人工知能 (AI): ChatGPT などのツールの最近の登場により、AI はビルダーの間で注目を集...

コードを超高速で変更! GPT-3に編集機能とテキスト挿入機能が追加され、AIがあなたに代わって詩を書くことができる

いつもトラブルを起こしているAI分野の花形研究機関OpenAIが最近また別のことをしました。GPT-...

...