K 分割交差検証とグリッドサーチ

K 分割交差検証とグリッドサーチ

みなさんこんにちは、私はZhibinです〜

今日は、GridSearch グリッド検索と K 分割相互認証を使用して、決定木モデルのパラメータを調整する方法を紹介します。

前回の記事では、決定木モデルの構築と実践を紹介しました。その時は、max_depth という 1 つのパラメータのみが使用されていました。しかし、実際には、モデルには、criterion (特徴選択基準)、class_weight (クラスの重み) などの他の影響パラメータがあります。より正確な結果を得たい場合は、モデルパラメータを調整し、モデルを構築するための最適なパラメータを見つける必要があります。

1. K分割交差検証

K 分割交差検証では、実際にデータ セットを K 個の部分に分割し、そのたびに K-1 個の部分をトレーニング セットとして選択し、残りの部分をテスト セットとして使用し、K 個のモデルの平均テスト結果を最終的なモデル効果として取得します。次の図に示すように:

K 値の選択はデータ セットのサイズに関係します。データ セットが小さい場合は K 値を増やし、データ セットが大きい場合は K 値を減らしてください。実装コードは次のとおりです。

 sklearn.model_selection から cross_val_score をインポートします
acc = cross_val_score(モデル、X、Y、cv=5)

2. グリッドサーチ

GridSearch は、すべての候補パラメータを走査し、各モデルの有効性と精度を評価し、最終結果として最適なパラメータを選択する、徹底的な検索パラメータ調整方法です。

パラメータ チューニングは、単一パラメータ チューニングと複数パラメータ チューニングに分かれています。Zhibin はそれぞれ例を挙げて紹介します。

(1)単一パラメータチューニング

単一パラメータのチューニングを説明するために、単一パラメータ max_depth を例に挙げます。コードは次のとおりです。

 sklearn.model_selection から GridSearchCV をインポートします
パラメータ = {'max_depth':[1,3,5,7,9]}
grid_search = GridSearchCV(モデル、パラメータ、スコアリング='roc_auc'、cv=5)grid_search.fit(X_train、Y_train)

出力パラメータの最適な結果:

グリッド検索.ベストパラメータ

max_depth パラメータの最適な結果は次のとおりです。

上記で得られた最適なパラメータ値でモデルを再構築し、AUC値が改善されたかどうかを確認します。コードは次のとおりです。

モデル = DecisionTreeClassifier(最大深度=7)
モデルをフィット(X_train,Y_train)
y_pred_proba = model.predict_proba(X_test)
sklearn.metricsからroc_auc_scoreをインポートします
スコア = roc_auc_score(Y_test.values,y_pred_proba[:,1])

得られた AUC 値は次のとおりです。

これは以前の値 0.958 よりも高く、モデルの精度が向上したことを示しています。

(2)マルチパラメータチューニング

決定木モデルには次のパラメータがあります。

これらのパラメータは、構築した決定木モデルの精度に影響します。ここでは、max_depth (最大深度)、criterion (特徴選択基準)、min_samples_split (子ノードを下方に分割するために必要なサンプルの最小数) を例として、マルチパラメータ チューニングを実行します。コードは次のとおりです。

 sklearn.model_selection から GridSearchCV をインポートします
パラメータ = {'max_depth':[5,7,9,11,13],'criterion':['gini','entropy'],'min_samples_split':[5,7,9,11,13,15]}
モデル = DecisionTreeClassifier()
grid_search = GridSearchCV(モデル、パラメータ、スコアリング='roc_auc'、cv=5)
グリッド検索.fit(X_train,Y_train)

出力パラメータの最適値:

グリッド検索.ベストパラメータ

上記で得られた最適なパラメータ値でモデルを再構築し、AUC値が改善されたかどうかを確認します。コードは次のとおりです。

モデル = DecisionTreeClassifier(基準 = 'エントロピー'、最大深度 = 13、最小サンプル分割 = 15)
モデルをフィット(X_train,Y_train)
y_pred_proba = model.predict_proba(X_test)
sklearn.metricsからroc_auc_scoreをインポートします
スコア = roc_auc_score(Y_test.values,y_pred_proba[:,1])

得られた AUC 値は次のとおりです。

これは以前の値 0.985 よりも高く、モデルがさらに最適化されたことを示しています。

<<:  NLP技術の準備——自然言語処理技術はあなたの妻ではありません

>>:  世界の自動運転「M&A」を4大勢力が攻勢

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

マイクロソフトの新たな注目論文:Transformer が 10 億トークンに拡大

誰もが独自の大規模モデルをアップグレードして反復し続けるにつれて、コンテキスト ウィンドウを処理する...

...

金融保険業界における人工知能の3つの重要なトレンド

[51CTO.com クイック翻訳] 変化は常に起こっており、将来の変化は予測可能です。保険市場は大...

...

ビッグデータの時代に、「アルゴリズム崇拝」に陥らないためにはどうすればいいのでしょうか?

「データ」は今日、これほど広く注目されたことはありません。以前は、携帯電話番号などの情報を何気なく...

デジタルビジネスにおける AI の 6 つの設計原則

人工知能 (AI) は、現在人間が行っている意思決定やタスクを補強し、自動化する機能を備えているため...

メーデー休暇中の安全確保のため5G警察ロボットが配備される

[[397258]] 2021年5月1日、「労働節連休」初日、浙江省舟山市公安局普陀区支局東港派出所...

顔認識: 顔の主要な特徴の認識

[[398462]]最後の顔認識画像の前処理では、前処理ステップを追加し、環境やその他の要因からの干...

アルゴリズム面接経験:Google、Microsoft、Alibaba、Tencent、Baidu、Byte、いくつ正解できますか?

修士課程の学生として、私は頑固にアルゴリズムの方向を選択しました。今年の秋の採用は確かに寒い冬でした...

テスラのヒューマノイドロボットが再び進化:視覚のみに基づいて物体を自律的に分類し、ヨガができる

数ヶ月沈黙していたテスラのヒューマノイドロボット、オプティマスプライムがついに新たな展開を見せた。私...

Javaの組み込みソートアルゴリズムをどうやって克服したか

Java 8 では、組み込みのソート アルゴリズムが大幅に最適化されました。整数やその他のプリミティ...

ViTと競合するDeepMindは、スパースモデルからソフト混合エキスパートモデルに移行

大規模モデルが驚くべきパフォーマンスを示したため、モデルのサイズはモデルのパフォーマンスに影響を与え...

...

初心者のためのデータ学習: Python でシンプルな教師あり学習アルゴリズムを実装する方法を学習します

[[220586]]編纂者:ウェンミン、ダ・ジェチョン、ティエンペイ最も広く使用されている機械学習手...