次回の組み込み設計に人工知能を使用する4つの理由

次回の組み込み設計に人工知能を使用する4つの理由

次のプロジェクトに機械学習を取り入れるべき 4 つの理由をご紹介します。

理由その1 – マーケティングブーム

エンジニアリングの観点から言えば、マーケティング上の話題性があるという理由だけで技術や方法を設計に取り入れることは、すべてのエンジニアが目指すべきことです。しかし、実際には、何かについて話題になれば、最終的にはその製品の売れ行きがよくなる可能性が高いのです。テクノロジー マーケティングは周期的に起こっているように見えますが、これらのサイクルを推進し、最終的に真実であることが証明される根底にあるテーマが常に存在します。

理由その2 – ハードウェアがサポートできる

過去数年間でマイクロコントローラとアプリケーションプロセッサがどれだけ変化したかは驚くべきことです。リソースが制限されたデバイス向けのマイクロコントローラは、数メガバイトのフラッシュと RAM をサポートし、オンボード キャッシュを備え、1 GHz 以上のシステム クロック レートを実現します。これらの「小さな」コントローラは DSP 命令もサポートするようになり、推論を効率的に実行できるようになりました。

これらのプロセッサで利用可能な計算能力があれば、機械学習をサポートするために追加の BOM コストがそれほどかからない可能性があります。追加コストがなく、マーケティング部門がそれを推進している場合は、ハードウェアがサポートできるため、機械学習を活用するのが合理的かもしれません。

理由3 – 開発が簡単になる

機械学習は、IoT、クラウド コンピューティング、組み込み開発においてほぼ欠かせないツールとなっています。機械学習により、ソフトウェア開発が大幅に簡素化されます。たとえば、ジェスチャーや手書きを認識したり、オブジェクトを分類したりできるアプリケーションを作成しようとしたことがありますか? これらの問題は人間の脳にとっては非常に単純ですが、プログラミングするのは非常に困難です。音声認識、画像分類、予測メンテナンスなどの一部のアプリケーション分野では、機械学習によって開発プロセスが大幅に簡素化され、スピードアップします。

IoT が拡大し続け、データ量が予想を超えるにつれて、大規模なデータセットを整理し、その情報を使用してシステムに望ましい結果を生み出すモデルをトレーニングすることがますます容易になっています。これまで、開発者は実行時に常にチェックされる構成値や許容可能なアクションのバーを持っていたかもしれません。これらには通常、多くのテストと推測が伴います。機械学習では、データを提供してモデルを開発し、組み込みシステムに推論を展開することで、これらすべてを回避できます。

理由4 – ソリューションツールボックスを拡張する

問題を解決し、製品を開発するために使用するツールとテクニックは常に変化しています。 1 年前、3 年前、5 年前に組み込みシステムをどのように開発したかを見てみましょう。一部の方法は間違いなく同じままですが、プロセスに大幅な改善や追加が行われ、効率性や問題解決方法が向上しているはずです。

機械学習を活用することは、ツールボックスに追加されるもう 1 つのツールであり、時間の経過とともに組み込みシステムの開発に不可欠であることが証明されます。しかし、組み込み開発者がツールを理解し、評価し、使用し始めなければ、ツールは決して改善されません。今日、あるいは来年に製品に機械学習ソリューションを導入するのは意味がないかもしれませんが、それが製品や顧客にどのように適用されるか、長所と短所を理解しておくと、テクノロジーが成熟したときに製品開発に使いやすくなることが保証されます。

<<:  美団の店舗ビジネスにおける異種広告混合配置の探求と実践

>>:  ディープラーニングの台頭から10年:OpenAIのイノベーターたち

ブログ    
ブログ    

推薦する

AIを活用してデジタル資産管理ワークフローを効率化する方法

[[412045]]人工知能は、マーケティングテクノロジーを含むあらゆる業界の状況を変えています。マ...

C# 暗号化におけるハッシュ アルゴリズムの適用に関する簡単な分析

ハッシュ アルゴリズムは C# 暗号化でよく使用される方法ですが、ハッシュ アルゴリズムとは何でしょ...

写真にピクセルレベルの透かしをひっそり追加: AI による芸術作品の「盗作」を防ぐ方法が発見されました

オープンソースのAI画像生成モデル「Stable Diffusion」のリリース以来、デジタルアート...

データマイニングの10の主要なアルゴリズムを、初心者でも一目で理解できるように平易な言葉で説明しました。

優秀なデータ アナリストは、基本的な統計、データベース、データ分析方法、考え方、データ分析ツールのス...

TensorFlowはディープラーニングに基づく画像補完を実装する

[[191845]]目次■ はじめに■ ステップ1: 画像を確率分布のサンプルとして理解する不足して...

データ保護にはAIベースのセキュリティ戦略が必要

回答者の半数だけが、自社のデータセキュリティ戦略が AI の発展に追いついていると答えました。さらに...

マイクロソフトは、兆パラメータのAIモデルのトレーニングに必要なGPUを4,000から800に削減しました。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

チップ設計の極めて高いハードルがAIによって「打ち破られる」

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

...

ロボティックプロセスオートメーションが人々の働き方をどのように変えているのか

[[422319]] RPA は人々の働き方をどのように変えるのでしょうか?今日、さまざまな業界の組...

AlphaGoの仕組み:マルチエージェント強化学習の詳細な説明

このレビュー記事では、著者はマルチインテリジェンス強化学習の理論的基礎を詳細に紹介し、さまざまなマル...

ロボット市場は飛躍の準備ができており、人間と機械の統合が主流のトレンドとなっている

最近、2021年世界ロボット大会が北京で盛大に開幕しました。ロボット分野の最先端技術と最新の成果が展...

...

...