マイクロソフトは、兆パラメータのAIモデルのトレーニングに必要なGPUを4,000から800に削減しました。

マイクロソフトは、兆パラメータのAIモデルのトレーニングに必要なGPUを4,000から800に削減しました。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式サイトにアクセスして許可を申請してください。

マイクロソフトは本日、数兆個のパラメータ(予測の根拠となるモデル内の変数)を含む AI モデルをトレーニングする新しい方法を導入する DeepSpeed ライブラリの更新バージョンをリリースしました。 Microsoft によれば、3D 並列処理と呼ばれるこのテクノロジは、さまざまなワークロードのニーズに適応でき、特に電力を大量に消費する非常に大規模なモデルの効率をバランスさせることができるという。

[[341739]]

数十億のパラメータを持つ単一の大規模 AI モデルにより、さまざまな困難な領域で大きな進歩が可能になりました。研究によると、AI が優れたパフォーマンスを発揮できるのは、言語、文法、知識、概念、文脈のニュアンスを理解できるためであり、スピーチを要約したり、リアルタイムのゲーム チャットで不適切な単語を除外したり、複雑な法的文書を解析したり、さらには GitHub を検索してコードを生成することも可能になります。

しかし、モデルのトレーニングには大量のコンピューティング リソースが必要です。 2018年のOpenAIの分析によると、大規模なAIトレーニングに必要なコンピューティング能力は2012年から2018年にかけて30万倍に増加し、およそ3.5か月ごとに倍増し、ムーアの法則のペースをはるかに上回っています。

強化された DeepSpeed は、データ並列トレーニング、モデル並列トレーニング、パイプライン並列トレーニングという 3 つの技術を活用して、「兆スケール」のモデル トレーニングを可能にします。

1兆パラメータのモデルをトレーニングするには、少なくとも400個のNvidiaの最新A100 GPU(それぞれ最大40GBのメモリを搭載)が必要であり、Microsoftは50%の効率で稼働する4,000個のA100が必要で、トレーニングを完了するには約100日かかると見積もっています。これは、1万枚以上のグラフィックカードを搭載した、マイクロソフトとOpenAIが共同設計したAIスーパーコンピューターにはかないません。これほどの大規模環境では、高い計算効率を達成することは困難です。

DeepSpeed は、大規模なモデルを 4 つのパイプライン ステージに分割し、さらに小さなコンポーネント (レイヤー) に分割します。各パイプライン ステージのレイヤーは、実際のトレーニングを実行する 4 つの「ワーカー」にさらに分割されます。各パイプラインは 2 つの並列データ インスタンス間で複製され、ワー​​カーはマルチ GPU システムにマップされます。 Microsoft によれば、これらおよびその他のパフォーマンスの改善により、1 兆パラメータの AI モデルのトレーニングに必要な Nvidia V100 GPU をわずか 800 個に削減できるという。

DeepSpeed の最新バージョンには、GPU とそのホスト CPU 上のコンピューティング リソースとメモリ リソースを活用して、単一の V100 で最大 130 億のパラメータを持つモデルをトレーニングする ZeRO-Offload テクノロジーも含まれています。マイクロソフトは、これは最先端のものより 10 倍強力であり、データ サイエンティストはより少ないコンピューティング リソースを使用してトレーナーをトレーニングできると主張しています。

「これら(DeepSpeed の新技術)は、極めて高い計算、メモリ、通信効率を提供し、数十億から数兆のパラメータを持つモデルのトレーニングをサポートします」と Microsoft はブログ投稿で述べています。「これらの技術により、極めて長い入力シーケンスも可能になり、単一の GPU、数千の GPU を備えたハイエンド クラスター、または非常に低速のイーサネット ネットワークを備えたローエンド クラスターを備えたハードウェア システムのパワーが解放されます。当社は、ディープラーニング トレーニングの速度と規模の限界を押し広げながら、急速に革新を続けます。」

<<:  企業がAI対応データベースを使用してAI導入を加速する方法

>>:  役立つ情報 | 115 行のコードで数独パーサーを作成する方法を段階的に説明します。

ブログ    
ブログ    
ブログ    

推薦する

AIとセキュリティ:繋がる双子

人工知能とセキュリティは、非常に重要かつ興味深い2つの分野です。それぞれの空間について書かれた本はあ...

人工知能を活用した高齢者介護サービスについての考察

高齢者介護サービスも人工知能を積極的に取り入れる必要がある。両者を統合し、相互に補強し、高齢者の多様...

Google AIが新世代の「物体検出」システムをリリース

[[319182]] 3月19日、Google BrainとAIチームは今週、EfficientDe...

IBM Cloud Pak for Data 4.0 で大規模なインテリジェント オートメーションを統合

あなたのビジネスが本当に予測可能かどうか、そしてデータ担当者、モデル、アプリケーションが適切なデータ...

...

ChatGPT の実際のパラメータはわずか 200 億であり、これは Microsoft によって初めて公開されました。ネットユーザー:OpenAIがオープンソースに不安を感じるのも無理はない

突然、大規模なモデリングコミュニティ全体が同じことについて話すようになりました。マイクロソフトの論文...

基本に立ち返る: 一歩先を行くために読むべき 5 つのデータ サイエンス論文

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

...

人工知能とはいったい何でしょうか?たぶん多くの人がこれを知らないでしょう!

今後10年間で、翻訳者、ジャーナリスト、アシスタント、警備員、運転手、販売員、カスタマーサービス、ト...

大規模なモデルでプロンプト内のより多くの例を学習させたい場合は、この方法を使用すると、より多くの文字を入力できます。

GPT や LLaMA などの大規模な言語モデルを使用する場合、入力プロンプトに文字数制限があるこ...

2017 ナレッジ グラフ ストレージ システム ランキング: あまり知られていないナレッジ グラフ ストレージ システム

ストレージシステムとは、プログラムやデータを格納するための各種記憶装置、制御部品、情報のスケジュール...