マイクロソフトは、兆パラメータのAIモデルのトレーニングに必要なGPUを4,000から800に削減しました。

マイクロソフトは、兆パラメータのAIモデルのトレーニングに必要なGPUを4,000から800に削減しました。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式サイトにアクセスして許可を申請してください。

マイクロソフトは本日、数兆個のパラメータ(予測の根拠となるモデル内の変数)を含む AI モデルをトレーニングする新しい方法を導入する DeepSpeed ライブラリの更新バージョンをリリースしました。 Microsoft によれば、3D 並列処理と呼ばれるこのテクノロジは、さまざまなワークロードのニーズに適応でき、特に電力を大量に消費する非常に大規模なモデルの効率をバランスさせることができるという。

[[341739]]

数十億のパラメータを持つ単一の大規模 AI モデルにより、さまざまな困難な領域で大きな進歩が可能になりました。研究によると、AI が優れたパフォーマンスを発揮できるのは、言語、文法、知識、概念、文脈のニュアンスを理解できるためであり、スピーチを要約したり、リアルタイムのゲーム チャットで不適切な単語を除外したり、複雑な法的文書を解析したり、さらには GitHub を検索してコードを生成することも可能になります。

しかし、モデルのトレーニングには大量のコンピューティング リソースが必要です。 2018年のOpenAIの分析によると、大規模なAIトレーニングに必要なコンピューティング能力は2012年から2018年にかけて30万倍に増加し、およそ3.5か月ごとに倍増し、ムーアの法則のペースをはるかに上回っています。

強化された DeepSpeed は、データ並列トレーニング、モデル並列トレーニング、パイプライン並列トレーニングという 3 つの技術を活用して、「兆スケール」のモデル トレーニングを可能にします。

1兆パラメータのモデルをトレーニングするには、少なくとも400個のNvidiaの最新A100 GPU(それぞれ最大40GBのメモリを搭載)が必要であり、Microsoftは50%の効率で稼働する4,000個のA100が必要で、トレーニングを完了するには約100日かかると見積もっています。これは、1万枚以上のグラフィックカードを搭載した、マイクロソフトとOpenAIが共同設計したAIスーパーコンピューターにはかないません。これほどの大規模環境では、高い計算効率を達成することは困難です。

DeepSpeed は、大規模なモデルを 4 つのパイプライン ステージに分割し、さらに小さなコンポーネント (レイヤー) に分割します。各パイプライン ステージのレイヤーは、実際のトレーニングを実行する 4 つの「ワーカー」にさらに分割されます。各パイプラインは 2 つの並列データ インスタンス間で複製され、ワー​​カーはマルチ GPU システムにマップされます。 Microsoft によれば、これらおよびその他のパフォーマンスの改善により、1 兆パラメータの AI モデルのトレーニングに必要な Nvidia V100 GPU をわずか 800 個に削減できるという。

DeepSpeed の最新バージョンには、GPU とそのホスト CPU 上のコンピューティング リソースとメモリ リソースを活用して、単一の V100 で最大 130 億のパラメータを持つモデルをトレーニングする ZeRO-Offload テクノロジーも含まれています。マイクロソフトは、これは最先端のものより 10 倍強力であり、データ サイエンティストはより少ないコンピューティング リソースを使用してトレーナーをトレーニングできると主張しています。

「これら(DeepSpeed の新技術)は、極めて高い計算、メモリ、通信効率を提供し、数十億から数兆のパラメータを持つモデルのトレーニングをサポートします」と Microsoft はブログ投稿で述べています。「これらの技術により、極めて長い入力シーケンスも可能になり、単一の GPU、数千の GPU を備えたハイエンド クラスター、または非常に低速のイーサネット ネットワークを備えたローエンド クラスターを備えたハードウェア システムのパワーが解放されます。当社は、ディープラーニング トレーニングの速度と規模の限界を押し広げながら、急速に革新を続けます。」

<<:  企業がAI対応データベースを使用してAI導入を加速する方法

>>:  役立つ情報 | 115 行のコードで数独パーサーを作成する方法を段階的に説明します。

推薦する

...

プログラマーでなくてもわかる「機械学習」の原理

機械学習とは何ですか?一般的なシナリオから始めましょう:ある日、マンゴーを買いに行ったところ、店員が...

AIとIoTテクノロジーがメンタルヘルス問題の解決に役立つ4つの方法

IoT テクノロジーは、精神疾患に苦しむ患者の健康状態を改善する専門家の支援を補完することができます...

...

ChatGPTのモバイル収益は9月に460万ドルという過去最高を記録し、成長疲れが現れ始めている。

10月10日、人工知能チャットボットChatGPTのモバイル分野での取り組みは大きな成果をもたらし...

静的な知識を動的にする: ナレッジグラフからファクトグラフへ

[[392524]]ソーシャル ネットワークには、有名な「6 次の隔たり理論」があります。 「世界中...

...

販売禁止の影で、国産GPGPUがその穴を埋めることはできるのか?

今年初め、ChatGPTはAIアプリケーションの開発を刺激する火花のようなもので、AI業界は開発の急...

趙傑:面接では(純粋な)アルゴリズムの質問が見られる

今朝、外出中に、タブレットでZuo Erduo Haoziの新しい記事「純粋アルゴリズムの面接の質問...

中秋節には月餅を食べます。今日はロボットがどのように月餅を作るかについてお話します。

最近、主要プラットフォームのホームページには、生地をこねる、餡を作る、型から外す、焼くまで、月餅を作...

マスク氏が示唆:脳の寄生虫が人間を超人的なAIを作らせる

マスク氏はツイッターで奇妙な見解を表明した。人類が超人的な人工知能を創り出した理由は、ある種の「脳寄...

Web 2.0 のソーシャル関連性ランキング アルゴリズムの探究

FriendFeed は最近検索機能を開始しましたが、Facebook もすぐに追随すると思います。...

機械学習による分類とその応用を理解するための図

機械学習は主に教師あり学習、教師なし学習、強化学習に分けられます。ただし、各手法の適用分野はそれぞれ...

自動運転シナリオのビデオから生成された初のマルチビュー世界モデル | DrivingDiffusion: BEV データとシミュレーションの新しいアイデア

著者の個人的な考え自動運転の分野では、BEV ベースのサブタスク/エンドツーエンド ソリューションの...