AIプロジェクトが失敗する6つの理由

AIプロジェクトが失敗する6つの理由

人工知能が人間の生活と市場に与える影響は計り知れません。世界経済統計によると、人工知能は2030年までに約15.7兆ドルの貢献をする可能性があります。この見通しを計算すると、それは複数の企業の経済を合わせたものです。

人工知能は誰もが導入すべきものであるということを、私たちは何度も目撃してきました。これは事実です。誰もそれを否定しません。ただし、AI 分野の失敗したプロジェクトについては誰も語りません。

[[417727]]

一部のビジネス リーダーは、既存のテクノロジー スタックに AI を実装したり、以下のような刺激的なプロジェクトに AI を使用したりすることを検討していますが、計画を達成できず、常に失敗する状況に陥っています。 2020年に実施された別の調査では、AIプロジェクトの約28%が失敗していることが示されました。

専門家は、企業の人工知能が失敗する理由は、企業自体に効果的な AI 戦略が欠けているからだと考えています。成功する AI 戦略を形成するには、慎重な準備、明確な目標の設定、強力な管理チームの育成が必要です。

つまり、人工知能システムを導入するということは、ビジネスのデジタル変革を意味します。機械学習ではビジネスオペレーションが向上する可能性がありますが、AI では必ずしもそうなるとは限りません。

AI プロジェクトの失敗を予測できる最も一般的な間違いと誤判断は次のとおりです。

1. 失敗アルゴリズムの改善

人工知能アルゴリズムの開発にはいくつかの問題があるかもしれません。この種のシステムは、その作成者が人間に対して同様のことを行う必要があるため、作成者の影響を受けます。これがよく起こる問題のポイントです。開発者の仕事は人工知能に注目するかもしれません。

失敗のもう一つの理由は、開発者が一部のデータ削除プロセスを除外し、マニュアルを追加してプログラムを分析する必要がある可能性があることです。データが混乱し、間違った結論につながる可能性があります。一方、アルゴリズムは目的を達成するには難しすぎる可能性があります。

2. 不十分なデータ戦略

AI プロジェクトを獲得する際の最大の問題の 1 つは、データ戦略の欠如です。具体化を始める前に、しっかりとしたデータ戦略を立てることが重要です。どのようなデータがあるのか​​を把握し、さまざまなソースからすべてのデータをまとめる戦略を立て、必要なデータの量を見積もり、最後にデータを抽出して変更する方法を計画する必要があります。

組織によっては、データが十分でない、またはデータが不十分であると感じて、プロジェクトなしで開始したり、AI プロジェクトをまったく開始しなかったりする場合もあります。しかし、AI 開発を阻む最も重大なデータ障壁は、AI プロジェクトを開始する前にチーム全体のデータ システムを導入していないことです。効果的な AI データ プランには、データに関するすべての懸念事項が網羅され、設計を実践および実験することで、データの可能性を最大限に引き出す積極的なアプローチが求められます。

3. 投資不足

人工知能と機械学習は現代の高度な技術であり、最新の技術を開発するには資金が必要です。 AI プロジェクトの開発と制作には莫大なコストがかかることから、有望な AI を提供するために必要なチームやソフトウェアへの投資に消極的な企業もあります。これは、最初の部分でデータ サイエンティストに実行させる作業に影響します。

企業内に新しい自律マシンが導入されたとしても、大量のデータではモデルが機能しているという証拠が得られないため、これらの自動化された方法によって生成されたモデルを維持および検証するためにデータ サイエンティストが必要になることがよくあります。データと使用パターンを提供するには、追加のソフトウェアと人材のソースが必要です。

4. 間違ったデータサイエンティスト

どのようなビジネスを運営する場合でも、すべてを処理および管理できるこの分野の専門家が必要です。しかし、データ分析に携わる人の中には、オンラインコースを受講した後、自らをデータサイエンティストと名乗る人もいます。実際のところ、ほとんどの機械学習や AI プロジェクトを管理するには、熟練したデータ サイエンティストが必要です。経験の浅いデータ サイエンティストは、効果のない開始、見た目は良いものの小さな工夫、時間の浪費などを指摘することがよくあります。

しかし、現在の経済状況を考えると、データサイエンティストを雇用するのは簡単ではありません。これらの熟練したリソースは限られており、非常に高価です。データサイエンスは、専門家になるには何年もの統計、数学、プログラミングのスキルを必要とする複雑な仕事です。

5. ルールを導入するだけでは不十分

長い間、モデルが拡張されなかった理由はサポートでした。この引き継ぎにはエラーが含まれる可能性があり、展開前にモデルを効果的に再テストして確認する必要があります。このアプローチには時間がかかる可能性があり、パターンが作成可能な場合には適切ではない可能性があります。

6. プロジェクトが複雑すぎる

企業は、AI プロジェクトが時間とリソースの面で非常に高価であることを知っています。 AI の価値により、最終的にビジネスを変革し、莫大な投資収益をもたらす野心的なプロジェクトに重点を置く傾向が生まれました。結局のところ、最も大きな投資を必要とするのは AI に関わる企業です。

結論

AI を導入するのは素晴らしいことですが、適切な戦略で導入すると大きな失敗に終わります。失敗する AI プロジェクトの数を減らすには、上記の要素を念頭に置いてください。

<<:  騒動を巻き起こしたディープマインドの論文は万能ではない

>>:  人工知能によって破壊される可能性のある7つの業界

ブログ    
ブログ    
ブログ    

推薦する

...

...

人間と人工知能がどのように関係を築くか

人間関係を構築するのに優れているのは人間か人工知能か?実際、この革新的な技術は長い間存在していました...

あなたは「オアシス」からどれくらい離れていますか? テクノロジーオタクが世界を救う方法をご覧ください

【元記事は51CTO.comより】最近、VR熱血ゲームを題材にした映画『レディ・プレイヤー1』が主要...

人工知能が建設業界の様相を変えている

建設業は最も長い歴史を持つ産業の一つであると言えます。結局のところ、人々は数千年前から様々なタイプの...

...

2020 年の優れた産業用人工知能アプリケーション

人工知能技術は今、世界を変えつつあります。多くの業界はすでに、ビジネス プロセスを改善するために A...

機械学習の本質は数理統計学ですか?答えはそれほど単純ではないかもしれない

AI 初心者の多くは、次のような同様の疑問を抱いているかもしれません。機械学習と数理統計の本質的な違...

...

ちょうど今、OpenAIはマスク氏を反論する記事を公式に発表し、過去8年間の電子メールのやり取りのスクリーンショットを公開した。

最も注目されているテクノロジー企業OpenAIと世界一の富豪マスク氏との壮大な戦いは新たなレベルに達...

人間のフィードバックなしで調整します。田元東チームの新しい研究RLCD:無害で有益なアウトラインライティングはベースラインモデルを全面的に上回る

大規模モデルがより強力になるにつれて、低コストでモデルの出力を人間の嗜好や社会の公共価値により沿った...

ディープラーニングとディープクローニング: チャットボットにとってより優れたソリューションはどちらでしょうか?

[[200112]]編集者注: チャットボットは目新しいものではありません。Facebook や ...

人工知能を活用して社会問題を解決する方法

人工知能はデータに命を吹き込み、過去のさまざまな目録や調査から収集された膨大なデータから再利用の機会...

2022年のゲーデル賞が発表されました!暗号の専門家3人が理論計算部門で最高賞を受賞

2022年のゲーデル賞が発表されました! ACM アルゴリズムおよび計算理論に関する興味グループ (...