AIと機械学習でデータセンターを強化

AIと機械学習でデータセンターを強化

AIと機械学習はデータセンターをよりスマートにする上でますます重要な役割を果たしている

今日の企業ではデータの重要性が増しており、ビジネスの成長を促進するために大規模なデータセットを管理および統制するには、データ管理が不可欠です。企業は、大量のデータを処理するために高度な分析および自動化ツールを活用しています。また、データ管理を改善するために、設備の整ったデータセンターも活用しています。データ センターは、クラウド ストレージ アプリケーションとトランザクションをサポートしながら、シームレスなデータ バックアップおよびリカバリ機能を提供します。ビジネス データ ストレージに独自の機能を提供するため、企業はデータ センター インフラストラクチャの改善に人工知能や機械学習などの新興テクノロジーを活用しています。

[[412594]]

機械学習は、大量のデータ内のパターンを調べて発見できる人工知能の高度なサブセットです。計画と設計、稼働時間の維持、IT ワークロードの管理、コスト管理など、データ センター運用のあらゆる側面を最適化する可能性があります。人工知能と機械学習は、データセンターの効率を劇的に向上させると期待されています。 IDC によると、データセンター内の IT 資産の 50% は、組み込みの AI 機能により自律的に動作するようになります。

人工知能と機械学習がスマートデータセンターを強化

データ センターは、ストレージ施設から重要なビジネス IT インフラストラクチャへと進化しました。データ センターは大規模なスーパーコンピュータと見なされており、最新のデータ センターでは複数のサーバーを使用して、処理能力とコンピューティング能力をさらに最適化し、向上させています。今日、ほぼすべての組織は、毎日大量の情報を処理するためにデータ センターを必要としています。

人工知能や機械学習などのテクノロジーがさまざまなコンピューティング アプリケーションに導入され始めており、企業のデータ センター管理に革命をもたらしています。 AI データ センターは、企業がデータに基づいた意思決定を行うのに役立ちます。また、組織が増大するデータ ストレージと処理の需要に先手を打つことにも役立ちます。データセンターはサイバー脅威に対して脆弱であるため、データセンターの AI はデータ セキュリティを大幅に向上させることができます。このテクノロジーは、ネットワーク内の正常な動作を識別し、ネットワーク内の異常や逸脱に基づいてネットワーク リスクを検出します。データセンターの AI は、複雑な計算の管理を簡素化し、データ処理センターが自律的かつ効率的に動作できるようにもします。

機械学習駆動型システムを使用すると、予測保守と予防保守に役立つ可能性があります。エネルギー効率を改善し、温度を制御し、冷却システムを調整することで、冷却効率を高めることができます。電気コストはデータセンター インフラストラクチャの重要な要素であるため、エネルギー消費の最適化は常に最大の関心事となっています。

エネルギーコストは毎年約10%上昇しており、その結果、キロワット時あたりのコストも高くなっています。米国だけでも、データセンターは年間 900 億キロワット時を超える電力を消費しています。世界中のデータセンターでは約 416 テラワットの電力が使用されているため、世界全体の使用量はさらに高くなります。それでも、AI と機械学習は、企業のデータセンターにおけるエネルギー使用に数多くのメリットをもたらすことができます。たとえば、検索エンジンの Google は、データセンターのエネルギー効率を向上させるために人工知能を適用し、エネルギー消費を 40% 削減しました。

AI と機械学習は、サーバーのパフォーマンス、ネットワークの輻輳、ディスクの使用率を監視して、データの停止を検出し予測するためにも使用できます。その結果、AI と機械学習の革命により、データセンターのインフラストラクチャが強化され、よりスマートで自動化されたデータ管理が可能になります。

<<:  Huawei Cloud TechWave人工知能スペシャルデーでは、インテリジェントプロセスロボットが効率的に動作する方法を紹介します

>>:  自動運転までどれくらい遠いのでしょうか?

ブログ    
ブログ    

推薦する

...

米国は自動運転に関する最も厳しい新規制を発行:L2〜L5を完全にカバー、今月30件のテスラ事故が調査された

[[408307]] IT Homeは6月30日、米国東部時間6月29日に米道路交通安全局(NHTS...

スペイン・ラ・リーガ:AIと機械学習でファン体験の変革に取り組む

IT は、世界で最も人気のあるスポーツであるサッカーをスペインで発展させ、体験する上で重要な役割を果...

99行のコードでアナと雪の女王の特殊効果の太極拳の進化を実現

コンピュータシミュレーション技術の継続的な発展のおかげで、ますますリアルな現実世界をコンピュータで再...

...

Flask を使用して機械学習モデルを簡単にデプロイするにはどうすればよいですか?

[51CTO.com クイック翻訳] データ サイエンティスト/機械学習エンジニアが Scikit...

衝撃的!AIはすでにゲームコードを書くことができます!将来プログラマーは失業するのでしょうか?

最近、AI関連の技術は業界でますます人気が高まっています。機械化されたゲームリソースの作成から開発者...

1 つの記事で 10 個のアルゴリズムをカバーします。基本的なグラフアルゴリズムの視覚的な説明

[[343053]]グラフは、ソーシャル メディア ネットワーク、Web ページやリンク、GPS の...

人工知能はあなたの目を見るだけであなたの性格を理解できる

[[238546]]目は魂の窓です。科学者たちは、目の動きを通じて「心を読む」ことができる人工知能を...

機械学習とビジネスを組み合わせる上で最も重要なことは何でしょうか?

純粋に学術的な目的で機械学習モデルを構築することと、製造、金融サービス、小売、エンターテインメント、...

...

AIOps ツールがクラウド コンピューティングに新たな命を吹き込む理由

[[331103]] AIOps ツールは IT 分野で幅広い応用が期待されていますが、クラウド テ...

...

大規模言語モデルの視覚的才能: GPTは文脈学習を通じて視覚的タスクも解決できる

現在、大規模言語モデル (LLM) は、自然言語処理 (NLP) の分野で変化の波を引き起こしていま...