AIと機械学習でデータセンターを強化

AIと機械学習でデータセンターを強化

AIと機械学習はデータセンターをよりスマートにする上でますます重要な役割を果たしている

今日の企業ではデータの重要性が増しており、ビジネスの成長を促進するために大規模なデータセットを管理および統制するには、データ管理が不可欠です。企業は、大量のデータを処理するために高度な分析および自動化ツールを活用しています。また、データ管理を改善するために、設備の整ったデータセンターも活用しています。データ センターは、クラウド ストレージ アプリケーションとトランザクションをサポートしながら、シームレスなデータ バックアップおよびリカバリ機能を提供します。ビジネス データ ストレージに独自の機能を提供するため、企業はデータ センター インフラストラクチャの改善に人工知能や機械学習などの新興テクノロジーを活用しています。

[[412594]]

機械学習は、大量のデータ内のパターンを調べて発見できる人工知能の高度なサブセットです。計画と設計、稼働時間の維持、IT ワークロードの管理、コスト管理など、データ センター運用のあらゆる側面を最適化する可能性があります。人工知能と機械学習は、データセンターの効率を劇的に向上させると期待されています。 IDC によると、データセンター内の IT 資産の 50% は、組み込みの AI 機能により自律的に動作するようになります。

人工知能と機械学習がスマートデータセンターを強化

データ センターは、ストレージ施設から重要なビジネス IT インフラストラクチャへと進化しました。データ センターは大規模なスーパーコンピュータと見なされており、最新のデータ センターでは複数のサーバーを使用して、処理能力とコンピューティング能力をさらに最適化し、向上させています。今日、ほぼすべての組織は、毎日大量の情報を処理するためにデータ センターを必要としています。

人工知能や機械学習などのテクノロジーがさまざまなコンピューティング アプリケーションに導入され始めており、企業のデータ センター管理に革命をもたらしています。 AI データ センターは、企業がデータに基づいた意思決定を行うのに役立ちます。また、組織が増大するデータ ストレージと処理の需要に先手を打つことにも役立ちます。データセンターはサイバー脅威に対して脆弱であるため、データセンターの AI はデータ セキュリティを大幅に向上させることができます。このテクノロジーは、ネットワーク内の正常な動作を識別し、ネットワーク内の異常や逸脱に基づいてネットワーク リスクを検出します。データセンターの AI は、複雑な計算の管理を簡素化し、データ処理センターが自律的かつ効率的に動作できるようにもします。

機械学習駆動型システムを使用すると、予測保守と予防保守に役立つ可能性があります。エネルギー効率を改善し、温度を制御し、冷却システムを調整することで、冷却効率を高めることができます。電気コストはデータセンター インフラストラクチャの重要な要素であるため、エネルギー消費の最適化は常に最大の関心事となっています。

エネルギーコストは毎年約10%上昇しており、その結果、キロワット時あたりのコストも高くなっています。米国だけでも、データセンターは年間 900 億キロワット時を超える電力を消費しています。世界中のデータセンターでは約 416 テラワットの電力が使用されているため、世界全体の使用量はさらに高くなります。それでも、AI と機械学習は、企業のデータセンターにおけるエネルギー使用に数多くのメリットをもたらすことができます。たとえば、検索エンジンの Google は、データセンターのエネルギー効率を向上させるために人工知能を適用し、エネルギー消費を 40% 削減しました。

AI と機械学習は、サーバーのパフォーマンス、ネットワークの輻輳、ディスクの使用率を監視して、データの停止を検出し予測するためにも使用できます。その結果、AI と機械学習の革命により、データセンターのインフラストラクチャが強化され、よりスマートで自動化されたデータ管理が可能になります。

<<:  Huawei Cloud TechWave人工知能スペシャルデーでは、インテリジェントプロセスロボットが効率的に動作する方法を紹介します

>>:  自動運転までどれくらい遠いのでしょうか?

ブログ    
ブログ    

推薦する

Llama3は7月にリリースされます!現在微調整中です!

編纂者 | Yan Zheng制作:51CTO テクノロジースタック(WeChat ID:blog)...

...

...

最大フロー問題の解決における画期的な進歩: 新しいアルゴリズムは「驚くほど高速」

この問題はネットワークフロー理論において非常に基本的なものです。 「新しいアルゴリズムは驚くほど高速...

AIの旅を始めるのに役立つ3つの重要なステップ

すべての IT 問題には学習曲線と転換点があり、解決策が見つかる「なるほど!」という瞬間があります。...

テスラ モデル3とYが再びハッカーのリレー攻撃の危険に直面、車は10秒で走り去られる可能性も

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

...

李開復:中国の大型モデル競争は非常に激しく、最終的には大きな勝者が数人出るだろう

12月28日、ベンチャーキャピタリストで元Google China社長の李開復氏の予測によれば、中国...

AIモデルの「レッドチーム」からの迅速な修正を期待しないでください

ホワイトハウスの関係者らが人工知能チャットボットが引き起こす可能性のある社会的危害を懸念する中、シリ...

サイバー攻撃が自動運転車に勝てない理由

マルウェア、ランサムウェア、ウイルス、サービス拒否攻撃など、これらの脅威は回復が困難なため、企業を窮...

新しい3Dバイオプリンティング技術は皮膚と骨の損傷を同時に修復できる

海外メディアの報道によると、ペンシルベニア州立大学の研究者らは、2種類の異なる「バイオインク」を使用...

知識経済は死んだ! AIが生み出す「直感経済」の新時代!

AI をめぐっては興奮と恐怖が同時に存在しているのは否定できない現実です。一方では、マイクロソフト...

Appleとオレゴン州立大学がAutoFocusFormerを提案: 従来のグリッドを廃止し、適応型ダウンサンプリング画像セグメンテーションを使用

従来の RGB 画像はラスター形式で保存され、ピクセルは画像全体に均等に分散されます。ただし、この均...