動的計算グラフディープラーニングに PyTorch を使用する主な理由の 1 つは、定義した関数の勾配/導関数を自動的に取得できることです。 入力を操作すると、計算グラフが自動的に作成されます。この図は、動的な計算プロセスが入力から出力までどのように進行するかを示しています。 計算グラフの概念を理解するために、次の関数のグラフを作成します。 ここにパラメータがあり、出力を最適化(最大化または最小化)したいと考えています。これを行うには、勾配を取得する必要があります。 次のコードでは、[1,2,3]を入力として使用します。
ここで、計算グラフを段階的に構築し、各操作が計算グラフにどのように追加されるかを理解しましょう。
上記のステートメントを使用して、次のような計算グラフを作成します (Tensorboard で表示)。 入力 x と定数 2 に基づいて a を計算し、b は a の 2 乗、などとなります。計算グラフは、多くの場合、逆方向に視覚化されます (矢印は結果から入力を指します)。 最後の出力で backward() 関数を呼び出すことで、計算グラフでバックプロパゲーションを実行できます。この関数は、属性 requires_grad=True を持つ各テンソルの勾配を計算します。
最後に、x.grad を印刷して対応するグラデーションを表示します。 GPUサポート操作Pytorch では、GPU は数千の小さな操作を並行して実行できるため、ニューラル ネットワークで大規模な行列演算を実行するのに最適です。 「CPUとGPUの違い」PyTorch は GPU を使用するため、NVIDIA の CUDA と cuDNN をインストールする必要があります。 次のコードは、GPU が使用可能かどうかを確認します。
次に、テンソルを作成し、それを GPU デバイスにプッシュします。
cuda の横のゼロは、これがコンピューター上の 0 番目の GPU デバイスであることを示します。したがって、PyTorch はマルチ GPU システムもサポートします。 以下は、CPU での大規模な行列乗算の実行時間と GPU での操作の比較です。 システムの構成に応じて、GPU アクセラレーションによりモデルのトレーニング速度が向上します。 |
<<: 市場規模は100億を超え、マシンビジョンはブルーオーシャンの傾向を示す
>>: AI+教育はさまざまなシナリオに適用されていることをご存知ですか?
インフレは世界的な問題であり、気候変動によって悪化しています。これは、異常気象の頻度と深刻度が増した...
[オリジナル記事は51CTO.comより] 私の周りには、「世界は広いから、外に出て旅をしたい」と言...
本日、IEEE 2020フェローのリストが発表されました。統計によると、280人以上が選出され、その...
マイクロソフトは、機械学習を使用して人々がより効率的に仕事を遂行できるよう支援する、多数の新機能を ...
昨年から、AIの普及に関わる仕事がたくさん必要になりました。私は長い間、ディープラーニングがなぜ特に...
アーキテクチャの革新を待つことができず、Nvidia は生成 AI 専用のチップを「先行して」リリー...
気候変動の緩和は緊急の優先課題になりつつあります。時間を無駄にすることはできません。大気中の二酸化炭...
I. 概要サイバーセキュリティ分野のデータ分析では機械学習手法がますます使用されるようになっていま...
大規模な純粋テキストモデルが増加しており、マルチモーダル分野ではマルチモーダル対話の大規模モデルも登...
かつて人々は AI の美しいビジョンを思い描いていましたが、現状は満足できるものではありません。 A...
来週ナスダックに上場する予定の自動運転車スタートアップ企業、オーロラは、自動運転システムのテストとト...
[[402166]]今日、ロボットを自動化やインダストリー 4.0 戦略にシームレスに統合する方法に...