[51CTO.com クイック翻訳] 人工知能(AI)は今ホットな話題であり、誰もがAIの実装に熱心であることは間違いありません。ガートナーとマッキンゼー・グローバル・インスティテュートの調査によると、AI の実装数は過去 4 年間で 270% 増加しています。 2022年までにAI市場は61億4000万ドルに達すると予想されています。 米国政府は今年2月、「国家のAI技術とイノベーションの促進と保護に協力する」ことを目的としたアメリカAIイニシアチブを立ち上げ、アメリカの労働力をAIに対応させるための教育と訓練の機会も盛り込んだ。 しかし、成長と実装に関するこうした議論は、すべての企業が問うべき重要な疑問に答えていません。それは、「AI は目の前のビジネス上の問題を解決するのに適切なソリューションなのか?」ということです。 傍観者からのAI AI は大流行していますが、実際のところ、大多数の人々は直面している問題のほとんどを解決するために AI を必要としていません。さらに、AI への投資は、プラグアンドプレイのハードウェアとソフトウェアを実装するほど簡単ではありません。具体的な決定を下す前に、AI ソリューションを導入することによる次のデメリットを考慮してください。
AIなしで問題を解決する AI には大きな可能性がありますが、日常のビジネス課題を解決するために AI テクノロジーをすべての人が必要というわけではありません。必要のない機能が多数付いた新しいガジェットを購入するのと同じように、AI を実装するのはやり過ぎかもしれません。 AIのトレンドに盲目的に従うのではなく、より実用的なアプローチを取るべきです。落ち着いて、ビジネスの観点から問題を検討し、何をする必要があるかを検討します。次に、問題を解決または防止するために必要なメトリックとイベントの種類を決定します。 組織内のハードウェアとソフトウェアのスタック、センサー、システムに対する見方の穴を単に塞ぐだけでも、既存のツールとテクニックで大きな効果が得られます。場合によっては、従来のアプローチの方が現在の AI ソリューションよりも適していることもあります。たとえば、時系列データの場合、そのほとんどは Holt-Winters アルゴリズムを使用して効率的に分析でき、この簡単な方法で結果を予測できます。従来のソリューションの多くは、AI ソリューションの構築に必要な専門知識を必要としません。これは、AI エンジニアが不足しており、多くの企業がこの才能ある人材を引き付けるのが難しいことを考えると、重要な要素です。 図 1. Holt-Winters アルゴリズムは時系列データを使用した予測に適しています。 確固としたビジネス戦略なしに、あるいは AI がビジネスや顧客に与える長期的な影響を考慮せずに AI を導入することは、大きな危険を伴います。データが大量にあるからといって、必ずしも AI を導入する必要があるわけではありません。それらのデータはすべて、役に立たない指標にすぎない可能性があります。 AI の可能性は魅力的であり、多くの業界で役割を果たす可能性が高いことは間違いありません。しかし現時点では、この新興テクノロジーには、複雑な技術的課題に対処でき、AI をどこに適用すれば最も良いビジネス成果が得られるかを理解できる十分なビジネス分野の経験を持つ専門的な人材が必要です。多くの「新しい」テクノロジーと同様に、成熟の過程で失敗する AI プロジェクトも数多く出てくるでしょう。 AI の動きの結果として組織が活用できる最も重要で肯定的な短期的なメリットは、一歩下がって現在利用可能なメトリックとイベントを分析し、既存の質問に答えるためにどのような追加のメトリックとイベントを収集できるかを検討することです。 AI をより利用しやすくするために必要なツールやテクノロジーは次々と登場しており、この準備は短期的には実用的なメリットをもたらす可能性があります。ただ話題になっているから、あるいは避けられないからという理由だけで AI を導入するのは、すぐに飛び込む良い理由にはなりません。あまり急ぎすぎるとチャンスを逃してしまうかもしれません。 原題: AI が必要ない理由、著者: Tim Hall [51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください] |
<<: ディープラーニングを超える新しいAIプログラミング言語Genについて1つの記事で学びましょう
>>: ゴミ分別ロボットが登場! 1分間に80個の仕分けが可能、人間の2倍の速さ
「機械が人に代わる」という無人化とインテリジェント化の潮流は、伝統的な飲食業界のあらゆる分野に広が...
中国製造2025の状況下で、イノベーションと起業家精神を奨励し、経済を高品質発展へと転換する中、中国...
Googleは6月15日、旅行計画、衣料品の買い物、皮膚異常の特定などをカバーする一連の新しい検索ア...
デジタル時代において、ビッグデータと人工知能はビジネス界の重要な原動力となっています。大量のデータが...
大型モデルはロボット工学の分野でその地位を確立しました。 「飲み物をこぼしてしまいました。助けてくれ...
[[329518]]企業が損失を避けるために機械学習の博士号取得者にどれくらいの金額を要求すべきでし...
Google I/O カンファレンスは予定通り開催されます。北京時間5月12日午前1時、Googl...
Dataiku と Databricks が発表した新しい共同調査によると、生成型人工知能の急速な導...
インターネット時代の恩恵が徐々に薄れていくにつれ、プレイヤーは次の発展のトレンドを求めて模索と実践を...
選択の余地はありません。2022年は近年で最も激動の年の一つになるでしょう。 テクノロジーもこの混乱...
この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...
2020年は紆余曲折の多い年であり、ドローン開発にとっては革新と変化の年です。今年、我が国のドロー...