警告! 「リップリーディング」キーでデータを盗む、AIは本当に怖い

警告! 「リップリーディング」キーでデータを盗む、AIは本当に怖い

コンピューターに頼って悪者を即座に見つけることができれば素晴らしいのですが、問題は AI システムがそれ以上のことができることです。 AI が私たちが携帯電話のタッチスクリーンで何をしているかを観察し、私たちがどのアプリを使用しているか、何を入力しているかを正確に推測できたらどうなるでしょうか?

[[400901]]

これは誇張ではありません。現代のコンピューター ビジョン テクノロジーは、これまで映画でしか見たことのない驚くべき機能をすでに実現しています。ビデオを AI システムに読み込み、低解像度のフレーム内のあらゆる詳細を観察するように要求し、少量のトレーニングと強力なアルゴリズムを通じて画像コンテンツを「強化」することができます。とても魔法的で、とても強力です。

これはシンプルで美しいように聞こえるかもしれませんが、自動運転機能、がん検出、写真に写っている物体の数のカウントなどに加え、この技術は私たちが予見できないさまざまな脅威をもたらす可能性もあります。

賢い人間は常に奇抜なアイデアを持っています。そして、彼らによって訓練された AI システムは、キー入力や手の動きに基づいて入力テキストを推測する方法をすぐに学習するかもしれません。考えてみればこれは本当に恐ろしいことなので、後ほど詳しく説明します。

まず強調しておきたいのは、コンピューター ビジョン テクノロジーが 2017 年以降大きく進歩したということです。 AI システムは、カメとライフルの違いを区別できない状態から、少量のデータだけで驚くほど正確な推論を行える状態に進化しました。たとえば、研究者は、コンピューターが AI を通じて受信した生体認証情報のみに基づいてユーザーを認証できることを実証しました。心理学者は、キーストローク分析データを使用して、自動化された心理的ストレス検出システムを開発しました。

研究者たちは、より優れたスペル、文法、その他のコミュニケーションツールを開発するために、人間のタイピングを模倣するように AI をトレーニングしています。つまり、私たちは AI システムに、ほとんどの人間が持っていない能力、つまり指の動きから入力内容を推測する能力を習得するように教えているのです。

AIがこの能力を習得すれば、それは私たち人間が「唇」を読むことを学ぶのと同等になるでしょう。そのような AI 製品がまだ存在しないからといって、不可能だというわけではありません。

それで、最悪の事態はどんなことが起こるのでしょうか?

つい最近、インターネットが始まったばかりの頃、私たちが直面した最大のセキュリティ上の脅威はショルダーサーフィンでした。つまり、パスワードを盗む最も簡単な方法は、入力するのをただ観察することだったのです。

したがって、ほとんどのパスワード入力インターフェースでは、実際の入力を隠すためにワイルドカードが使用されます。結局のところ、暗闇に隠れて私たちの活動を監視しているのが誰なのかは分からないのです。

しかし、画面が覆われていると、ほとんどの人は実際にユーザーがどの文字や数字を押したのか分かりません。私たちは率先して、暗記したパスワードをパスワード フィールドに簡単かつスムーズに素早く入力できます。

しかし、人間ができないからといって、AI ができないというわけではありません。十分なデータがあれば、AI の世界では何でも可能になります。

理論的には、十分なデータ リソースがある限り、開発者は AI チップ (現在さまざまな主力スマートフォンで使用されているチップなど) またはクラウド リソースを通じて、スーパー推論機能を備えたモデルをトレーニングできます。

このように、携帯電話のカメラを使用すれば、ほぼ誰でもスパイ対象を撮影し、実際の操作内容や画面に入力された内容を入手することができます。

つまり、悪意のある人はこれを利用して、パスワード、銀行カードのパスワード、さらにはドキュメントの完全な内容(入力プロセス全体をキャプチャできる限り)を盗むことができます。

この機能をクラウド サービス システムに接続すれば、大手テクノロジー企業や連邦政府でも包括的な監視ネットワークを迅速に構築できます。 Google であれ、LAPD であれ、どんなカメラでも簡単に鍵検出装置に変えることができます。画面の前であなたがすることはすべて彼らの目から逃れることはできません。

<<:  ロボットが医療に力を与える!しかし、医療ロボットがブレイクするまでには、まだ4歩の道のりがある。

>>:  絶えず繰り返されるアルゴリズムとプログラミング技術が若者の発達を促している

ブログ    
ブログ    
ブログ    

推薦する

...

...

...

NetEase はデータ指標の異常をどのように検出し、診断するのでしょうか?

1. 背景指標はビジネスと密接に関係しており、その価値は、問題点やハイライトを発見し、タイムリーに...

バーチャル試着室テクノロジーの仕組み

[51CTO.com クイック翻訳]テクノロジーの進歩と発展により、バーチャル試着室が人々の生活に入...

PyTorch Lightning モデルを本番環境にデプロイするにはどうすればいいですか?

[51CTO.com クイック翻訳] 機械学習の分野を見ると、ソフトウェアエンジニアリングの原理を...

【アルゴリズム】アルゴリズムを理解する(I)—アルゴリズムの時間計算量と空間計算量

[[407579]]序文大企業の秋季採用の先行スタートが始まっており、新卒採用の秋季大幅強化の警鐘が...

600以上のベーキングレシピを分析し、機械学習を使用して新製品を開発しました

焼き菓子は、世界中のさまざまな料理の中で常に重要な位置を占めてきました。柔らかいパン、繊細なケーキ、...

...

Python で多層パーセプトロン ニューラル ネットワークを実装する

[[341199]]何かを学べない限り、車輪の再発明をしないでください。 TensorFlow、Py...

サイバーセキュリティにおけるAIの新たな機会を見つける方法

[[383159]]新しいテクノロジーの適用には、多くの場合、プラスの影響とマイナスの影響の両方が伴...

...

人工知能は教育のバランスのとれた発展に貢献する

最近、中国人工知能学会、中国言語知能研究センターなどの主催による第3回中国知能教育会議が西安で開催さ...

自動運転の浮き沈み:バブルが消えた後

[51CTO.comよりオリジナル記事] 静かな2019年を経て、自動運転業界は新年を迎え、徐々に活...

孤独を研究していますか? Reddit のホットな話題: AI のゴッドファーザー、ヤン・ルカンが提案した「エネルギー モデル」とは一体何でしょうか?

「エネルギー自己教師学習っていったい何?」と多くのRedditネットユーザーがコメントした。ちょう...