この記事はWeChatのパブリックアカウント「Python Society」から転載されたもので、著者はHuangwei AIです。この記事を転載する場合は、Python Society の公式アカウントにご連絡ください。 序文Python がデータ サイエンスにとって非常に重要な理由の 1 つは、データ分析と視覚化のライブラリが膨大にあることです。この記事では、最も人気のあるもののいくつかについて説明します。 1.テンソルフローGoogle が開発した TensorFlow ディープラーニング フレームワークは、間違いなくニューラル ネットワークをトレーニングするための最も人気のあるツールです。 Google は、Gmail や Google 翻訳などの大規模なサービスを実装するために、このフレームワークを積極的に使用しています。 TensorFlow は、Uber、Airbnb、Xiaomi、Dropbox などのブランドで使用されています。
2. サイキットラーンScikit-Learn は、Python、C、C++ で書かれた人気の機械学習ライブラリです。汎用的な代替手段を使用して、機械学習における従来の問題を解決します。産業システムや科学研究に使用されます。 幅広い教師あり学習および教師なし学習アルゴリズム。 Scikit-learn は機械学習アルゴリズムに特化しています。読み込み、処理、データ操作、視覚化はライブラリのタスクには含まれません。 大規模なコミュニティと詳細なドキュメント。 3. ナンバリングNumPy は、機械学習用の最も人気のある Python ライブラリの 1 つです。 TensorFlow やその他のライブラリは、多次元配列に対する操作を実行するためにこれを内部的に使用します。 インタプリタ言語 (Python) で実装された数学アルゴリズムは、コンパイル言語で実装されたものよりもはるかに遅くなることがよくあります。 NumPy ライブラリは、多次元配列に最適化された計算アルゴリズムの実装を提供します。 4. ケラスディープラーニング モデルをすばやく簡単に構築する必要がある場合、Keras は最適な選択肢です。 P は、TensorFlow および Theano フレームワークへのアドオンです。このライブラリは、ディープラーニング ネットワークの操作を対象としており、コンパクト、モジュール式、拡張可能になるように設計されています。 Keras は、計算バックエンドとして使用される科学計算ライブラリに関係なく、ニューラル ネットワークを簡単に構築できる、高レベルで直感的な抽象化のセットを提供します。
5. パイトーチPyTorch は、ニューラル ネットワークを扱うための最良の選択肢の 1 つであり、TensorFlow の長年のライバルです。主に Facebook の人工知能グループによって開発されました。 PyTorch は、Generative Adversarial Networking におけるディープラーニング フレームワークとして使用されます。 PyTorch で独自の GAN を作成する方法を学びます。
6. ライトGBMLightGBM は勾配ブースティング フレームワークであり、Kaggle コンペティションで最も人気のあるアルゴリズムの 1 つです。勾配ブースティングは、分類および回帰問題のための機械学習手法であり、予測モデルのアンサンブル(通常は決定木)の形式で予測モデルを構築します。
7. パンダPandas は、データを操作するための高レベルの構造と、データを分析するための幅広いツールを提供するライブラリです。このライブラリを使用すると、データの並べ替えやグループ化、欠損データや時系列の処理など、多くの複雑なコマンドを少量のコードで実行できます。すべてのデータはデータ フレーム テーブルの形式で表示されます。 8. サイパイSciPy は、機械学習タスクを含む科学および工学コンピューティングに不可欠です。
9. イーライ5Eli5 は、統合 API を使用して機械学習モデルを視覚化およびデバッグするための Python ライブラリです。これには、scikit-learn、Keras、前述の LightGBM、XGBoost、lightning、CatBoost など、いくつかの ML フレームワークとライブラリのサポートが組み込まれています。 10. ナラティカNLTK は、自然言語の記号処理と統計処理のためのライブラリとプログラムのセットです。このパッケージには、このパッケージで実行できる自然言語処理タスクの背後にある概念を説明する書籍を含む広範なドキュメントが付属しています。 11. 枕Pillow は、PIL (Python Image Library) 画像ライブラリの改良版です。複数のファイルタイプをサポート: PDF、WebP、PCX、PNG、JPEG、GIF、PSD、WebP、PCX、GIF、IM、EPS、ICO、BMP など。コンピューター ビジョン タスクに使用できるフィルタリング ツールは多数あります。 |
<<: 「緊急天使」がロボットを救出するために前進し、事態を収拾した
>>: 人工知能は将来の仕事や生活にどのような影響を与えるのでしょうか?
老朽化するインフラ、コスト圧力、変動する利益率、規制の監視などにより、より効率的で強力なメンテナンス...
ロボット工学と人工知能の発展により、多くの仕事が機械に置き換えられるでしょう。機械は、一部のタスク、...
「将来、AIとは何の関係もないと主張する企業はなくなるだろう」これは、2018年の世界人工知能会議で...
1.1 ナレッジグラフの開発履歴ナレッジグラフは 1950 年代に始まり、大きく 3 つの開発段階に...
1月5日、有名なSF作家アイザック・アシモフが「ロボット工学三原則」を提唱しました。 Googleは...
人工知能という学問分野が1956年に正式に提唱されて以来、会議やフォーラムでの華やかな「ホットワード...
AI(人工知能)とIoT(モノのインターネット)の融合により、世界中の企業に大きな可能性がもたらされ...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
2022年のGoogle I/Oカンファレンスでは、参加者のほとんどがGoogleの社員であったにも...
量子プロセッサは最先端の研究テーマです。世界トップクラスの研究室や企業の研究機関が常に新たな進歩を遂...
今日では、GPT-4 や PaLM などの巨大なニューラル ネットワーク モデルが登場し、驚くべき少...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...