チャットボットにおける2つの技術的火種: AIと機械学習

チャットボットにおける2つの技術的火種: AIと機械学習

チャットボットの人気が高まるにつれて、競合するアプリケーション フレームワークが多数登場しました。 Oracle は、業界標準に準拠することで断片化と非互換性を防止できると考えています。

チャットボット技術(音声またはテキストによる会話的な人間同士のやりとりをシミュレートするソフトウェア)が普及するにつれ、アプリ開発者が習得する必要のある専門知識の新たな分野が生まれます。現在、チャット ルームを構築するためのフレームワークは 12 種類以上存在し、競争によって機能と実装が急速に拡大しています。

[[188392]]

チャット技術プラットフォームを提供する企業の一つは、データベース大手の Oracle です。 Oracle Cloud Platform の統合製品担当シニアバイスプレジデント兼ゼネラルマネージャーである Amit Zavery 氏は、最近 SearchCloudApplications との独占インタビューで同社の位置付けについて説明しました。

Oracle の観点から、チャットボット テクノロジーの現状はどのようなもので、どのようなスキルが不足しているか、またはまだ十分に成熟していないのでしょうか。

Amit Zavery: チャットボットとの自然な言語ベースのやり取りには、多くのテクニックが適用できます。電子メール プラットフォームに統合できます。欠けているのは、標準化されたフレームワークの中にはまだ違いがあるものもあり、複数のプラットフォーム間で統合と明確な区別が必要であるということです。

Oracle のチャットボットの取り組みにおいて AI はどのような役割を果たすのでしょうか?

Zavery: Oracle の戦略は、新しいテクノロジー、言語、クラウドネイティブ開発環境、そしてセンサー、システム、モバイルデバイスなどすべてを統合する機能に基づいた最新の開発を提供することです。これらすべてを実現するために、私たちは AI と機械学習の機能、そしてモバイル フロントエンドを備えたプラットフォームを構築しました。私たちは現在、チャットボットを使用してこれらのインターフェースとエクスペリエンスを強化しています。

AI およびチャットボット技術と、それらを使用するアプリケーションとの関係は何ですか?

Zavery: AI と機械学習のアイデアを中心に、私たちはインテリジェント アプリケーションと呼んでいるものを提供してきました。当社は長年にわたり、データベース、管理製品、アプリケーションに組み込み機械学習アルゴリズムと AI システムを組み込んできました。スマート アプリでは、すべてのデータを収集したかどうか、ユーザーが必要とする可能性のある情報をどのように予測するか、何が不足していて何が必要であるかを判断する方法を検討します。このようにして、顧客の行動を推測し、予測することができます。当社は、データ クラウドでパーソナライズされたターゲット マーケティング、コマース、分析を提供するエンドツーエンドのインテリジェント アプリケーションを構築しました。どちらも現在利用可能です。

Oracle にはチャットボット フレームワークがあり、Microsoft にも 1 つあり、AWS、Facebook、Google などにも多数あります。過去数年間に、さまざまな Unix の断片化され互換性のないバージョンが急増したことはありませんか?

ザベリー:そうではないことを願います。しかし、何らかの分裂は常に存在するでしょう。特定のさまざまな実装とフレームワークが存在するため、開発者はどのフレームワークを使用するかを決定する必要があります。世界は相互運用性と一貫性の重要性を認識していると思います。業界標準を遵守し、コミュニティに貢献し、さまざまなシステム間で連携して、実行されている作業が確実に機能するようにするのは、Oracle を含むすべてのチャットボット テクノロジー プロバイダーの責任です。

これは、Oracle が真空状態で動作していないことを意味しますか?

Zavery: チャットボット テクノロジーを検討する際、Facebook Messenger、WeChat などとの統合と相互運用性を確保するために、複数のメッセージング サービス プロバイダーと連携しました。

ユーザーはフレームワークを気にする必要はありませんが、開発者は気にする必要があります。何か提案はありますか?

Zavery: ご覧のとおり、開発者はフレームワークを重視しており、私たちのチャットボットは API によって実装されています。統合する場合、実装の詳細について心配する必要はありません。インターフェースがきれいで、明確で、チャット ルームやモバイル インターフェースから離れようとしていることがわかっていれば、それで問題ありません。アプリケーションを書き直す場合でも、1 つの API セットに対して書き込むだけなので、すべてを書き直す必要はありません。

<<:  ゲイツは間違っていた!これはロボットが仕事を奪うことに対処するための最善の解決策です

>>:  ディープラーニング(CNN RNN Attention)を使用して大規模なテキスト分類問題を解決する - 概要と実践

ブログ    

推薦する

AIが開発ツールを進化させる方法

[[410767]] GitHub Copilot、DeepDev、IntelliCode、その他の...

2019年北京知源会議が北京で開幕、中国と海外の学術リーダーが人工知能研究の最前線について議論

10月31日、北京知源人工知能研究所が主催する2019年北京知源大会が国家会議センターで2日間にわた...

AIがハイパフォーマンスコンピューティングから学べる7つの教訓

効果的な IT 組織は、ハイパフォーマンス コンピューティング (HPC) から教訓を得て、システム...

...

機械学習で必ず学ぶべき 10 のアルゴリズム

この記事では、線形回帰、ロジスティック回帰、線形判別分析、ナイーブベイズ、KNN、ランダムフォレスト...

次世代言語モデルパラダイム LAM が登場します! AutoGPTモデルがLLMを席巻、計画、メモリ、ツールの3つの主要コンポーネントの包括的なレビュー

ChatGPT によって開始された AI の波は私たちを人工知能の時代へと導き、言語モデルは日常生活...

...

自動運転、論文採点のための人工知能…インテリジェントテクノロジーにはどのような破壊的可能性が秘められているのでしょうか?

[[216050]]教育が人工知能の発展と時代の変化に追いつかなければ、15年後には大学の半数が苦...

神府に集い、知恵で未来を勝ち取ろう!神府デモンストレーションゾーン「ファーウェイクラウドカップ」2021年全国AIコンテストが成功裏に終了

2021年9月27日、神府改革革新モデル区、ファーウェイ、上海交通大学が共催する「神府にクラウドが集...

国内外のオープンソースモデルを競うLlama-2の初の総合評価

2023年7月を迎え、大規模言語モデル(LLM)の開発は新たな段階に入り、オープンソースが話題になっ...

...

...

日常生活におけるAIの応用

機械学習やその他の技術をバックグラウンドで使用することで、AI は私たちの日常生活に多くの素晴らしい...