IoTと機械学習がビジネスを加速させる5つの方法

IoTと機械学習がビジネスを加速させる5つの方法

モノのインターネットと機械学習は、今日のビジネスにおいて最も破壊的なテクノロジーの 2 つです。さらに、これら 2 つのイノベーションは、あらゆる企業に大きなメリットをもたらす可能性があります。これらを組み合わせることで、エンタープライズビジネスに革命を起こすことができます。

[[381706]]

IoT デバイスと機械学習の組み合わせは自然な流れです。機械学習が最適に機能するには大量の関連データが必要であり、IoT はそのデータを提供できます。これら 2 つのテクノロジの使用が急速に増加するにつれて、企業はこれらを併用し始める必要があります。

IoT と機械学習によってビジネス運営を改善できる 5 つの方法をご紹介します。

1. 非効率性に対処する

データによれば、現在約 25% の企業が IoT デバイスを使用しており、この数は今後も増加し続けると予想されています。こうしたセンサーを導入する企業が増えるにつれて、データを収集する場所も増えていきます。機械学習アルゴリズムはこのデータを分析して、職場の非効率性を特定できます。

機械学習プログラムは、さまざまな職場からのデータを調べることで、企業が異常に多くの時間を費やしている場所を見つけることができます。その後、従業員がその領域で費やす労力を削減するための新しいワークフローを提案できます。これは、ビジネスリーダーが機械学習なしでは実現不可能だと決して気付かない問題領域です。

機械学習プログラムは、人間が見逃す可能性のあるデータポイント間のつながりを作るのが得意です。また、従来のツールよりも 20 倍早く、より正確に予測を行うことができます。 IoT デバイスから供給されるデータが増えるにつれて、処理速度と精度は向上するばかりです。

2. ビジネスプロセスの自動化

機械学習と IoT により、日常的なタスクを自動化することもできます。ビジネス プロセスの自動化では、AI を使用してさまざまな管理タスクを処理するため、従業員が行う必要がありません。 IoT デバイスがこれらのプログラムに提供するデータが増えるにつれて、プログラムの効率も高まります。

時間の経過とともに、このようなテクノロジーにより、一部の業界では生産性が 40% 向上しました。スケジュール設定や記録保存などのタスクを自動化および合理化することで、従業員は他の付加価値の高い作業に集中できるようになります。

3. サプライチェーンの可視性

IoT 実装の最も有望な領域の 1 つはサプライ チェーンです。車両や輸送コンテナに搭載された IoT センサーは、リアルタイムの位置データや製品の品質など、重要な情報を企業に提供できます。このデータだけでもサプライチェーンの可視性を向上させることができますが、機械学習と組み合わせるとビジネスを変革できる可能性があります。

機械学習プログラムは、IoT センサーからリアルタイムのデータを取得して、それを実行することができます。起こりうる混乱を予測し、作業員がそれに応じて対応できるよう警告することができます。これらの予測分析により、企業はよくあるサプライチェーンの遅延を回避できるようになります。

4. リスク管理

企業が直面している脆弱性を理解していない場合、ビジネスリーダーは十分な情報に基づいた意思決定を行うことができません。 IoT デバイスは、企業がこれらのリスクをより深く理解するために必要なデータを提供できます。機械学習はさらに一歩進んで、人間が見逃す可能性のあるデータの興味深いポイントを発見することができます。

IoT デバイスは職場や顧客に関するデータを収集し、それを機械学習プログラムで処理することができます。

IoT と機械学習が予測できるリスクはビジネスリスクだけではありません。 IoT 空気質センサーは、従業員の健康を守るために HVAC フィルターを交換する時期を企業に通知できます。同様に、機械学習サイバーセキュリティ プログラムは、ハッカーが企業のネットワークに侵入しようとしていることを検出できます。

5. 廃棄物を減らす

IoT と機械学習がビジネスを変革するもう 1 つの方法は、無駄を排除することです。 IoT センサーからのデータにより、企業が必要以上にリソースを使用している可能性がある場所が明らかになります。機械学習アルゴリズムはこのデータを分析し、改善方法を提案することができます。

ビジネスにおける無駄の最も一般的な原因の 1 つはエネルギーです。さまざまな非効率性のためです。 IoT センサーは、廃棄物が発生している場所を測定し、機械学習を通じて、廃棄物を止めるための調整を行うことができます。

機械学習アルゴリズムと IoT デバイスを組み合わせることで、エネルギーの使用を制限し、プロセスで必要なものだけを使用するようにすることができます。これらの対策は小さいように思えるかもしれませんが、積み重なると大きな節約につながります。

IoT と機械学習がなければ、企業は潜在能力を最大限に発揮できません。それらの出現により、企業はコストを節約できるようになります。今日、モノのインターネットと機械学習はビジネスの世界を変えつつあり、これらのテクノロジーを採用しない企業はすぐに取り残される可能性があります。

<<:  RPAとAIの違いを理解する

>>:  RPA の収益は 2021 年に 18 億 9,000 万米ドルに達する見込みです。AI は RPA をどのように再定義するのでしょうか?

ブログ    
ブログ    

推薦する

リアルタイムの洞察を強化: コンピューター ビジョンとエッジ コンピューティングの相乗効果

今日の急速に変化する世界では、最先端技術のシームレスな統合がイノベーションの基盤となっています。その...

2018年に「ブロックチェーン+人工知能」について知っておくべきこと

現在、ビジネス界、テクノロジー界、金融界を問わず、最もホットな言葉は「ブロックチェーン」に他なりませ...

スタンフォード大学がトランスフォーマー代替モデルを訓練:1億7000万のパラメータ、バイアスを除去可能、制御可能、解釈可能

GPT に代表される大規模言語モデルは、これまでも、そしてこれからも、並外れた成果を達成し続けますが...

...

「無人運転」の技術的道筋

無人運転車が実際に走行するには、認識、意思決定、実行における技術的な問題を解決する必要があります。 ...

テスラのヒューマノイドロボットが再び進化:視覚のみに基づいて物体を自律的に分類し、ヨガができる

数ヶ月沈黙していたテスラのヒューマノイドロボット、オプティマスプライムがついに新たな展開を見せた。私...

...

GPT-4は97回の対話で世界の諸問題を探り、P≠NPという結論を導き出した。

科学研究の分野で働く人なら、P/NP 問題についてはある程度聞いたことがあるでしょう。この問題は、ク...

人工知能はクラウドストレージとデータサービスの革新を推進する

[[358649]]従来のストレージとデータ構造が、クラウドネイティブ アプリケーションに必要な移植...

ビッグデータアーキテクチャの詳細解説:データ取得からディープラーニングまで

機械学習 (ML) は、確率論、統計、近似理論、凸解析、アルゴリズム複雑性理論などの分野を含む多分野...

人工知能は広告に関して私たちを誤解させている。今こそ誤りを正すべき時だ

社会が急速に変化する時代において、ブランドセーフティ戦略は分裂を招き、保護対象であるブランド評判その...

ビッグデータと人工知能 - 機械的思考から統計的思考へ

今日は、ビッグデータ、人工知能、認知問題の解決の関係ロジックについて話す記事を書こうと思います。した...

北京大学、バイトダンス等は増分学習を用いたスーパーピクセルセグメンテーションモデルLNSNetを提案した

オンライン学習によって引き起こされる壊滅的な忘却問題を解決するために、北京大学などの研究機関は、勾配...

2018年、ブロックチェーンは監査人の仕事を破壊するでしょうか?

電卓が普及した後、そろばんの使い方しか知らなかった会計士は失業した。ゴールドマン・サックスは最盛期に...

Gluon は AI 開発者に自己調整型機械学習をもたらします

概要: Microsoft と Amazon の共同作業により、MXNet と Microsoft ...