2021 年には、これらのトレンドがさらなるイノベーションをもたらし、新たな機会の扉を開き、私たちの生活を変える上で大きな役割を果たすでしょう。 人工知能と機械学習は市場で注目されている技術です。電子商取引から高度な量子コンピューティング システム、医療診断システム、家電製品、そして特に人気の高いスマート アシスタントまで、あらゆる業界で人工知能と機械学習が業界のイノベーションに応用されています。 IDC によると、AI は 2020 年に世界中で約 1,560 億ドルの収益を生み出し、2019 年から 12.3% 増加しました。 2021 年の AI と ML のトレンドはどのように進化するでしょうか?
1. ハイパーオートメーションにおけるAIとMLの役割の拡大 ハイパーオートメーションは、ガートナーが特定した新興技術トレンドであり、フォレスターは「デジタル プロセス オートメーション」、IDC は「インテリジェント プロセス オートメーション」と呼んでいます。適切なテクノロジーを組み合わせて、企業全体のワークフローとプロセスを自動化、簡素化、検出、設計、測定、管理します。 パンデミックにより、AI と ML が主要な構成要素であり、その主要な実現要因であるこのような高度な概念の導入が加速しました。ロボット自動化ツールなどの他のテクノロジーも含まれますが、成功するプログラムは静的にパッケージ化されたソフトウェアに依存することはできません。自動化されたビジネス プロセスは、変化する状況に適応し、予期しない事態に積極的に対応する必要があります。 ここで、AI、ML モデル、ディープラーニングが役立ちます。これらのアルゴリズムとモデルを自動化システムからのデータとともに使用することで、随時改善し、変化するプロセスやビジネス ニーズに対応できるようになります。 2. AIとIoTの重なり AIとIoTのギャップは曖昧になりつつあります。どちらの技術も独自の特性を持っており、それらを組み合わせることで新たな機会が生まれます。ガートナーによると、2022 年までに企業の IoT プロジェクトの 80% に何らかの形で AI が組み込まれることになります。 では、これら 2 つの高度なテクノロジーはどのように連携するのでしょうか。IoT がデジタル神経系だとすると、AI は賢明な判断を下す脳です。 AI はデータから迅速に洞察を収集し、IoT システムをよりスマートにすることができます。 3. サイバーセキュリティアプリケーションにおけるAIの利用増加 機械学習と人工知能は、すでにホームセキュリティや企業システムのサイバーセキュリティシステムで重要な位置を占めています。サイバーセキュリティ開発者は、DDoS 攻撃、マルウェア、ランサムウェアなどの進化する脅威に対処するために、テクノロジーの更新に絶えず取り組んでいます。これら 2 つを組み合わせることで、古い脅威の亜種を含む脅威を特定できるようになります。 AI ベースのサイバーセキュリティ ツールは、企業の通信ネットワーク、トランザクション システム、デジタル アクティビティ、Web サイト、外部の公開リソースからデータを収集し、AI アルゴリズムを使用してパターンを識別し、疑わしい IP アドレスやデータ漏洩の可能性などの脅威アクティビティを特定することもできます。 調査会社IHS Markitによると、現在、ホームセキュリティシステムにおけるAIの使用は、ユーザーのビデオカメラと統合されたシステムと、音声アシスタントと統合された侵入者警報システムに大きく限定されている。 4. 拡張知能の台頭 拡張知能の台頭は刺激的なトレンドになるはずです。テクノロジーと人材の最高の能力を組み合わせることで、従業員の効率とパフォーマンスが向上します。ガートナーは、2023 年までに大企業のインフラストラクチャおよび運用チームの約 40% が生産性向上のために AI 強化の自動化を導入すると予測しています。 5. 会話型AI 自動メッセージングと音声ベースのテクノロジーは、会話型 AI と呼ばれます。現在、AI 開発者はこのテクノロジーをアプリやウェブサイトに導入しています。音声とテキストを確認し、顧客の意図を理解し、さまざまな言語を解読し、人間のように応答することでタスクを完了します。 たとえば、Amazon Echo や Google Home は、今日の会話型 AI の最も優れた例です。 しかし、会話型 AI にはまだ改善の余地が大いにあります。音声認識と自動テキスト認識は、NLP (自然言語処理) に対する優れた制御を必要とする 2 つの課題であり、開発者はさまざまな方法でこれらの課題を克服できます。 今日、企業は会話型 AI チャットボットを使用して、より良い顧客体験を提供しています。 |
<<: 上位 10 の古典的なソート アルゴリズムの詳細な説明: バブル ソート、選択ソート、挿入ソート
>>: 人工知能が人間の労働力に完全に取って代わった後、労働者は何をすべきでしょうか?彼らは職を失うのでしょうか?
多くの上司は人工知能を未来と見ており、多くのテクノロジーリーダーは ChatGPT を人工知能と同義...
この高さ3メートルの巨大ロボットは、ボストン・ダイナミクスのロボット犬より20年以上も前の1980年...
機械学習はデータセンターの経済性を劇的に変え、将来の改善への道を開きます。機械学習と人工知能がデータ...
[[258931]]今日の科学技術分野における最も最先端のトピックとして、人工知能は3年連続で政府活...
国内メディアの報道によると、12月17日に開催された2019年中国スマート企業発展フォーラムで、工業...
この機会に応えて、IBM と Boston Dynamics は協力して、IBM ソフトウェアと B...
経験とデータに基づく革命統計革命は 1990 年代初頭に人工知能 (AI) に広がり、2000 年代...
[[428372]] [51CTO.com からのオリジナル記事]推奨システムは、登場以来、学界や産...
モノのインターネットは、私たちの生活様式を変えるのと同様に、学習方法も変えています。 AI の専門家...
1. Kuaishou のコンテンツコールドスタートはどのような問題を解決しますか?まず、Kuais...