機械学習がデータセンター管理をどう変えるか

機械学習がデータセンター管理をどう変えるか

機械学習はデータセンターの経済性を劇的に変え、将来の改善への道を開きます。

機械学習と人工知能がデータセンターに導入され、ラックが ASIC、GPU、FPGA、スーパーコンピューターでいっぱいになり始めるにつれて、ハイパースケール サーバー ファームの外観と雰囲気が変化しています。

これらの技術により、これまでは膨大な量のデータ処理を必要としていた機械学習システムのトレーニングに利用できるコンピュータの処理能力が向上します。最終的な目標は、よりスマートなアプリケーションを構築し、企業がすでに日常的に使用しているサービスを強化することです。人間の判断と常識だけに頼ると、求められる正確性と有効性の基準に遠く及びません。 IT サービスに対する膨大な需要を満たす唯一の持続可能な方法は、データ主導の意思決定に完全に移行し、すべてのデータを活用して成果を向上させることです。同様の規模や専門知識を持たない企業やマネージド サービス プロバイダーの中には、データ センター管理ソフトウェアやこのテクノロジーを活用するクラウドベースのサービス プロバイダーが利用できるようになったため、機械学習を早期に導入する企業もあります。

IDC によると、2022 年までにデータセンターの IT 資産の 50% が組み込み AI テクノロジーにより独立して運用されるようになるとのことです。計画と設計、ワークロード、稼働時間、コスト管理など、多くの全体的な操作は、機械学習を使用してデータセンターで最適化できます。

以下は、今日のデータセンター管理における機械学習の最大の使用例の一部です。

  • データ センターの効率を向上: 企業は、ソフトウェア アラートに頼るのではなく、機械学習を使用してデータ センターの物理環境を自律的に管理できます。これには、データセンターのアーキテクチャと物理レイアウトをリアルタイムで変更するソフトウェアが含まれます。
  • キャパシティ プランニング: データ センターでの機械学習により、IT 企業は需要を予測し、スペース、電力、冷却、IT リソースが不足しないようにすることができます。アルゴリズムは、企業がデータ センターを統合し、アプリケーションとデータを中央データ センターに移動する場合など、シフトが施設の容量にどのような影響を与えるかを判断するのに役立ちます。
  • 運用リスクの軽減: ダウンタイムの防止はデータセンター運営者にとって重要なタスクであり、機械学習によりダウンタイムの予測と防止が容易になります。データセンター管理における機械学習ソフトウェアは、冷却システムや電源管理システムなどの主要コンポーネントのパフォーマンス データを追跡し、機器が故障する可能性が高い時期を予測します。その結果、これらのシステムに対して予防保守を実行することができ、コストのかかるダウンタイムを回避できます。
  • スマート データを使用して顧客離れを削減: 企業はデータ センターで機械学習を使用して顧客をより深く理解し、顧客の行動を予測できるようになります。機械学習ソフトウェアを顧客関係管理 (CRM) システムに統合することで、AI 駆動型データセンターは CRM では通常使用されない履歴データベースからデータを検索して取得できるようになり、CRM システムで新しいリード生成や顧客成功戦略を開発できるようになります。
  • 予算影響分析およびモデリング: このテクノロジーは、データ センターの運用データとパフォーマンス データを財務データ (特に該当する税金情報) と組み合わせて、IT 機器の購入と保守の価格を決定するのに役立ちます。

機械学習は人間よりも速く動作するため、テラバイト単位の履歴データを調べ、ほんの一瞬で決定にパラメータを適用することができます。これは、データセンター内のすべてのアクティビティを追跡する場合に役立ちます。ベンダーとデータセンター運営者が機械学習で取り組んでいる主な問題のうち 2 つは、効率性の向上とリスクの軽減です。

たとえば、200 を超えるデータセンターを擁する世界最大のホスティング プロバイダーである Digital Realty Trust は、最近、機械学習テクノロジーのテストを開始しました。インフラストラクチャを維持するために必要な膨大な量の基盤システム、デバイス、データを消費し、処理する人間の能力は、すぐに枯渇するでしょう。 Digital Realty は、優れたリアルタイム処理、反応、通信、意思決定機能により、この恩恵を受けることになります。

要するに、データセンター運営者には AI と機械学習を活用するための選択肢が数多くあり、テクノロジーがより手頃な価格で高度になるにつれて選択肢は増えていくでしょう。明るい未来が待っています。​

<<:  XGBoost機械学習モデルの意思決定プロセス

>>:  Colossal-AIはHugging Faceコミュニティをシームレスにサポートし、低コストで大規模モデルを簡単に加速します。

ブログ    
ブログ    
ブログ    

推薦する

チューリング賞受賞者ヨシュア・ベンジオ氏:生成フローネットワークがディープラーニングの分野を拡大

最近、「GFlowNet Foundations」と題された論文が注目を集めています。これはチューリ...

...

洪水の知らせを聞いたらすぐに行動を起こしましょう!ロボットは風と波の守護者となることを目指す

災害に直面して、すべての関係者が行動を起こした。人民解放軍部隊が被災者の救出に派遣されているとみられ...

タイミング解析の一般的なアルゴリズムはすべてここにあります

時系列分析とは、過去の出来事の時間特性を利用して、将来の出来事の特性を予測することです。これは比較的...

企業で文明的な AI を推進するための 6 つのヒント

「文明化された AI」への期待が高まるにつれ、コンサルタントは公平で偏見のないアルゴリズムを作成する...

...

Google のコード生成システムはプログラマーの半分を「飲み込んだ」のでしょうか?人類は長い間AIに「負けて」きました!

著者: 徐潔成最近、センセーショナルなAlphaGo囲碁ロボットを発売したDeepMindが再び大き...

ディープラーニングAIを使用してマルウェアやAPTを検出し、防止する方法

[[163896]] [51CTO.com クイック翻訳] Deep Instinct は、最大 9...

...

DeepMindがMuJoCoをオープンソース化!メタは「スケルトンハンド」にクルミをプレイさせるために使用されます

「クルミで遊んでいる」骸骨の手を見たことがありますか? この魔法の「手」は、Meta が新たにリリー...

人工知能:テクノロジーは無邪気、善と悪は人間の心の中にある

[[338194]]テクノロジーは常に諸刃の剣です。人類の文明の進歩を促進する一方で、時には人類に災...

人工知能とビッグデータの隠れた危険性とは何でしょうか?

データの不足から現在では大量のデータが存在するまで、近年では利用可能なデータの量が飛躍的に増加し、ビ...

フェデックスが分析と AI を活用してサプライチェーンを強化する方法

FedEx Express の使命は、分析、AI、ML から得られるデータ主導の洞察を活用して、お客...

エッジ AI がインダストリー 4.0 の成果を推進する方法

物理的な世界を中心としたこれまでの産業革命とは異なり、第 4 次産業革命によって導入されたデジタル要...