年末総括: 2021 年の人工知能 (AI) と機械学習 (ML) の 5 つの主要な開発トレンド

年末総括: 2021 年の人工知能 (AI) と機械学習 (ML) の 5 つの主要な開発トレンド

[[359772]]

来年、AI テクノロジーはビジネス業務にさらに深く浸透するでしょう。

人工知能 (AI) と機械学習 (ML) はしばらくの間私たちの世界を変えてきましたが、2020 年はこれら 2 つのゲームチェンジャーに新たな機会と緊急性をもたらし、2021 年にはさらに大きな発展が期待されています。

新型コロナウイルスは明らかに触媒となり、オフィスから製造現場まで、また製品の革新から消費者の嗜好まで、ビジネスを活性化させた。今後 1 年間、世界が「ニューノーマル」に適応していく中で、AI と ML に期待できることは次のとおりです。

人工知能がクラウドイノベーションを推進する

AI ベースのアプリケーションとサービスは、クラウドの導入を促進し、その人気の恩恵を受けています。他の多くの仮想サービスと同様に、AI はクラウドでコスト効率が高く、企業は新年も引き続きその恩恵を受けるでしょう。

人工知能はエンタープライズ クラウド アプリケーションに急速に組み込まれつつあり、大手クラウド プロバイダーは自社の環境内で AI および ML サービスをサービスとして提供しています。クラウドに大量のデータを保管している企業にとって、AI と ML への迅速なアクセスは、新たな方法で機能と価値をもたらします。対照的に、オンプレミス インフラストラクチャを採用している組織は、独自の AI ツールに投資しなければ、遅れをとるリスクがあります。

実際、実用的またはセキュリティ上の理由からクラウド テクノロジーを早期に導入しなかった組織にとって、AI は最終的に「キラー アプリ」になる可能性があります。金融とヘルスケアは、この点に関して戦略を見直している2つの業界です。たとえば、新型コロナウイルス感染症の発生以来、医療分野では、感染率、機器の配備、スタッフの活用、さらには治療法の変化を分析および予測する AI の価値が発見されています。

予算が絶えず変化する中、財務部門は迅速な財務計画と予測のために AI 対応のクラウド テクノロジーを導入することの価値を認識しています。この分析能力は来年さらに重要になるでしょう。 IDC は、AI テクノロジーへの支出が 2023 年までに 979 億ドルに増加し、2019 年の支出レベルの 2 倍以上になると予測しています。

AIはユーザビリティに重点を置く

初期の AI は、使いやすさではなくアルゴリズムを重視していました。しかし今日では、多くの AI 対応アプリケーションが使いやすさをますます重視するようになっています。理想的な世界では、ユーザーは AI を使用していることをまったく意識する必要がなく、シームレスになります。

アクセス可能な AI と ML は、すでに多くの種類のビジネス プラットフォームの一部になっています。ビジネス インテリジェンス (BI) アプリケーションでは、AI と ML がユーザーにほとんど摩擦なく洞察を提供します。人々が達成したいタスクを判断し、AI を通じてそれを自動的にサポートできるアプリケーションが増えています。技術に詳しくないユーザーにとって、この使いやすさは信じられないほどの価値となるでしょう。

AI 搭載プラットフォームは、バックグラウンドで目立たずに動作することで、ユーザーを「指導」し、より良い結論に導き始めます。大量のデータを照会し、異常や傾向を見つけ、その結果を適切なビジネスコンテキストで提示することで、AI と機械学習は 2021 年にあらゆるレベルのユーザーの意思決定プロセスを促進します。

人工知能はデータ爆発の恩恵を受ける

IoT デバイスの継続的な成長、マイクロプロセッサの高速化、5G の登場により、まもなくデータが飛躍的に増加し、AI および ML 開発者はそれを最大限に活用できる立場になります。

モノのインターネットはこの革命の始まりに過ぎません。これまで以上に多くの種類のデバイスから、より多くのデータが取得されるようになります。新しい iPhone 12 はその好例です。 iPhone 12はLiDAR(光検出と測距)テクノロジーと組み合わせることで、最大5メートル離れた部屋やシーンのディープキャプチャをサポートするだけでなく、さまざまな拡張現実アプリケーションもサポートします。 LiDARはドローンやロボットにも広く使用されています。

LIDAR やその他のテクノロジーからのデータを活用するために、ネイティブ AI 機能を備えた多数のアプリケーションやクラウド プラットフォームが市場に登場しています。 AI 導入企業を対象とした調査では、74% が 3 年以内に AI がすべてのエンタープライズ アプリケーションに統合されることに同意しました。 AI により、これらのアプリケーションとそれらを含むデバイスは、新しいサービス、新しい洞察、より深い知識を生み出すことができるようになります。

人工知能はさらなる信頼を注入する

近年、人工知能は受容と信頼の面で大きな進歩を遂げています。 2021 年に AI と ML の使用が急増するにつれて、快適性のレベルも高まります。

AI と ML の倫理的な課題については活発な議論が行われており、ほとんどの企業はテクノロジーを効果的に使用する方法について適切に対応しています。その結果、AI は労働者に取って代わるものではなく、労働者がより大きな可能性を実現できるようにするものであると人々は考え始めています。

たとえば、リモートワークやハイブリッドワークプレイスが一般的になるにつれて、AI はチームのダイナミクスをサポートすることでコラボレーションを促進します。これにより、チーム会議の参加者は前回の会議から得た洞察を解析し、より早く状況を把握できるようになります。また、膨大なデータセットの特定の交差点に注目することで、問題解決を容易にすることもできます。

人工知能は予測能力を高める

2020年はすぐには忘れられない年となるでしょう。世界が新型コロナウイルス感染症の惨状に焦点を合わせる中、前例のない規模でデータが収集、整理、調査されている。

この歴史的な期間中、AI ツールは進化を続け、日々結論を導き出し、重要な対応を推進してきました。高度なデータ モデルにより、当局は地区、郡、コミュニティに関する深い洞察を得ることができます。さらに変革的なのは、AI と ML が政策立案、リソース計画、ワクチンの展開などに影響を与える変化を予測できる方法です。

2021年には多くの面で楽観的になる理由があります。新型コロナウイルスは来年には減少する可能性があり、協調的な取り組みにより最悪の状況は脱するかもしれない。しかし、パンデミックが過ぎ去った後でも、他の問題や新たな世界的課題は残るでしょう。確かなことは、AI が解決策を見つけるのに役立つということです。

<<:  組織の AI 戦略が失敗する 7 つの理由

>>:  AIがIT運用に大きな影響を与える仕組み

ブログ    

推薦する

...

Timsort アルゴリズムと Yutu 月面探査車のバグを見つけるにはどうすればよいでしょうか?

0×00 背景形式手法は、私たちのほとんどにとっては非常に高度なものです。せいぜい授業で聞いたこと...

2021年11月のドローン業界の最新動向を3分で振り返る

現在、人工知能や5Gなどの技術の助けを借りて、我が国のドローン開発は急速な成長の軌道に乗っています。...

...

毛沢東選集と魯迅全集をAIに与えたところ、AIが書いた大学入試のエッセイは非常に適切だった。

[[407658]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitA...

効率的な本人認証の鍵:生体認証技術

生体認証技術は、指紋、顔の特徴、虹彩などの人体の固有の生理学的特徴と人間の行動特性を利用して個人のア...

「Google版SORA」はぼやけたグラフィックで嘲笑されたが、世界シミュレーターとして新たな一歩を踏み出した。

インタラクティブな仮想世界を作成するために使用される、Google の 110 億のパラメータ Ge...

人工知能はそんなに怖くない! AIとビッグデータは世界の3つの大きな問題を解決し、人類に利益をもたらすことができる

[[216213]] AIと仕事に関しては、予測は暗い。常識では、AI は近い将来、機械化が過去 2...

PythonでQQロボットを開発する方法

序文この記事の目的はPythonでMiraiロボットを開発することですが、最初のチュートリアル、特に...

顔認識を禁止した後、サンフランシスコは検察官の事件処理を支援するためにAIを活用

最近、海外メディアの報道によると、サンフランシスコ市は7月1日に導入予定の「偏見削減ツール」を発表し...

GitHub のスター数は 10 万近くに達しています。インド人男性がすべての AI アルゴリズムを Python と Java で実装しました。

[[326676]]今日、アルゴリズムを実装した 2 つのプロジェクトが GitHub のホット ...

小売業界のトレンド: 人工知能からクーポンコードまで

[[436501]]機械学習と人工知能 (AI) の登場により、企業のビジネスのやり方は大きく変化し...