年末総括: 2021 年の人工知能 (AI) と機械学習 (ML) の 5 つの主要な開発トレンド

年末総括: 2021 年の人工知能 (AI) と機械学習 (ML) の 5 つの主要な開発トレンド

[[359772]]

来年、AI テクノロジーはビジネス業務にさらに深く浸透するでしょう。

人工知能 (AI) と機械学習 (ML) はしばらくの間私たちの世界を変えてきましたが、2020 年はこれら 2 つのゲームチェンジャーに新たな機会と緊急性をもたらし、2021 年にはさらに大きな発展が期待されています。

新型コロナウイルスは明らかに触媒となり、オフィスから製造現場まで、また製品の革新から消費者の嗜好まで、ビジネスを活性化させた。今後 1 年間、世界が「ニューノーマル」に適応していく中で、AI と ML に期待できることは次のとおりです。

人工知能がクラウドイノベーションを推進する

AI ベースのアプリケーションとサービスは、クラウドの導入を促進し、その人気の恩恵を受けています。他の多くの仮想サービスと同様に、AI はクラウドでコスト効率が高く、企業は新年も引き続きその恩恵を受けるでしょう。

人工知能はエンタープライズ クラウド アプリケーションに急速に組み込まれつつあり、大手クラウド プロバイダーは自社の環境内で AI および ML サービスをサービスとして提供しています。クラウドに大量のデータを保管している企業にとって、AI と ML への迅速なアクセスは、新たな方法で機能と価値をもたらします。対照的に、オンプレミス インフラストラクチャを採用している組織は、独自の AI ツールに投資しなければ、遅れをとるリスクがあります。

実際、実用的またはセキュリティ上の理由からクラウド テクノロジーを早期に導入しなかった組織にとって、AI は最終的に「キラー アプリ」になる可能性があります。金融とヘルスケアは、この点に関して戦略を見直している2つの業界です。たとえば、新型コロナウイルス感染症の発生以来、医療分野では、感染率、機器の配備、スタッフの活用、さらには治療法の変化を分析および予測する AI の価値が発見されています。

予算が絶えず変化する中、財務部門は迅速な財務計画と予測のために AI 対応のクラウド テクノロジーを導入することの価値を認識しています。この分析能力は来年さらに重要になるでしょう。 IDC は、AI テクノロジーへの支出が 2023 年までに 979 億ドルに増加し、2019 年の支出レベルの 2 倍以上になると予測しています。

AIはユーザビリティに重点を置く

初期の AI は、使いやすさではなくアルゴリズムを重視していました。しかし今日では、多くの AI 対応アプリケーションが使いやすさをますます重視するようになっています。理想的な世界では、ユーザーは AI を使用していることをまったく意識する必要がなく、シームレスになります。

アクセス可能な AI と ML は、すでに多くの種類のビジネス プラットフォームの一部になっています。ビジネス インテリジェンス (BI) アプリケーションでは、AI と ML がユーザーにほとんど摩擦なく洞察を提供します。人々が達成したいタスクを判断し、AI を通じてそれを自動的にサポートできるアプリケーションが増えています。技術に詳しくないユーザーにとって、この使いやすさは信じられないほどの価値となるでしょう。

AI 搭載プラットフォームは、バックグラウンドで目立たずに動作することで、ユーザーを「指導」し、より良い結論に導き始めます。大量のデータを照会し、異常や傾向を見つけ、その結果を適切なビジネスコンテキストで提示することで、AI と機械学習は 2021 年にあらゆるレベルのユーザーの意思決定プロセスを促進します。

人工知能はデータ爆発の恩恵を受ける

IoT デバイスの継続的な成長、マイクロプロセッサの高速化、5G の登場により、まもなくデータが飛躍的に増加し、AI および ML 開発者はそれを最大限に活用できる立場になります。

モノのインターネットはこの革命の始まりに過ぎません。これまで以上に多くの種類のデバイスから、より多くのデータが取得されるようになります。新しい iPhone 12 はその好例です。 iPhone 12はLiDAR(光検出と測距)テクノロジーと組み合わせることで、最大5メートル離れた部屋やシーンのディープキャプチャをサポートするだけでなく、さまざまな拡張現実アプリケーションもサポートします。 LiDARはドローンやロボットにも広く使用されています。

LIDAR やその他のテクノロジーからのデータを活用するために、ネイティブ AI 機能を備えた多数のアプリケーションやクラウド プラットフォームが市場に登場しています。 AI 導入企業を対象とした調査では、74% が 3 年以内に AI がすべてのエンタープライズ アプリケーションに統合されることに同意しました。 AI により、これらのアプリケーションとそれらを含むデバイスは、新しいサービス、新しい洞察、より深い知識を生み出すことができるようになります。

人工知能はさらなる信頼を注入する

近年、人工知能は受容と信頼の面で大きな進歩を遂げています。 2021 年に AI と ML の使用が急増するにつれて、快適性のレベルも高まります。

AI と ML の倫理的な課題については活発な議論が行われており、ほとんどの企業はテクノロジーを効果的に使用する方法について適切に対応しています。その結果、AI は労働者に取って代わるものではなく、労働者がより大きな可能性を実現できるようにするものであると人々は考え始めています。

たとえば、リモートワークやハイブリッドワークプレイスが一般的になるにつれて、AI はチームのダイナミクスをサポートすることでコラボレーションを促進します。これにより、チーム会議の参加者は前回の会議から得た洞察を解析し、より早く状況を把握できるようになります。また、膨大なデータセットの特定の交差点に注目することで、問題解決を容易にすることもできます。

人工知能は予測能力を高める

2020年はすぐには忘れられない年となるでしょう。世界が新型コロナウイルス感染症の惨状に焦点を合わせる中、前例のない規模でデータが収集、整理、調査されている。

この歴史的な期間中、AI ツールは進化を続け、日々結論を導き出し、重要な対応を推進してきました。高度なデータ モデルにより、当局は地区、郡、コミュニティに関する深い洞察を得ることができます。さらに変革的なのは、AI と ML が政策立案、リソース計画、ワクチンの展開などに影響を与える変化を予測できる方法です。

2021年には多くの面で楽観的になる理由があります。新型コロナウイルスは来年には減少する可能性があり、協調的な取り組みにより最悪の状況は脱するかもしれない。しかし、パンデミックが過ぎ去った後でも、他の問題や新たな世界的課題は残るでしょう。確かなことは、AI が解決策を見つけるのに役立つということです。

<<:  組織の AI 戦略が失敗する 7 つの理由

>>:  AIがIT運用に大きな影響を与える仕組み

ブログ    

推薦する

この記事では、ニューラルネットワークBPアルゴリズムの原理とPythonでの実装について説明します。

私は最近、BP アルゴリズムを体系的に研究し、この研究ノートを書きました。私の能力が限られているため...

自動運転のための2Dおよび3D視覚認識アルゴリズムについて話す

環境認識は自動運転における最初のリンクであり、車両と環境を結び付けるものです。自動運転システムの全体...

7 つの重要な要素: 優れた機械学習アルゴリズムを選択するには?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

...

ボストンダイナミクスのスポットが工場に入り、作業を開始しました!現代自動車はそれを夜間警備に配備し、工場の安全管理官に変身させる

ボストン・ダイナミクスのロボットは見た目はかっこいいのですが、使い道がないので、好評は得られても人気...

機械学習の卒業生は就職に不安を感じ始めています!卒業生と企業のどちらがより厳しいでしょうか?

機械学習を専攻する学生も就職について不安を感じ始めているのでしょうか?昨日、あるネットユーザーがRe...

2019年の自動運転のキーワード:冬眠と迂回による救国

何年もの間大騒ぎされていた自動運転の人気も、ようやく落ち着いてきた。世界の資本市場が寒い冬の時期に入...

...

自動運転を利用したい人はどれくらいいるでしょうか?

「ブレーキをかけないで、ただぶつかってください!」少し前、ネット上で出回った動画には、顧客が唐DM...

機械学習の応用シナリオは数多くありますが、金融分野での違いは何でしょうか?

[[241804]]ビッグデータダイジェスト制作編纂者:大迪、彭耀慧、茶曦、唐元、夏亜偉金融の世界...

スポーツへの人工知能とビッグデータの導入は、市場を混乱させたり、破壊したりするのでしょうか?

英国ラフバラー大学とチェルシー・フットボール・クラブの研究者らが共同で、最近のシーズンの選手のデータ...

Baiduの王海峰氏はオープンソースのディープラーニングプラットフォームPaddlePaddleを2019年のソフトウェアエキスポに導入した。

「ディープラーニングフレームワークは、インテリジェント時代のオペレーティングシステムです。百度のP...

...

ChatGPT: 機械学習とディープラーニングを簡単かつ楽しく

ディープラーニングと機械学習は、今日のテクノロジーのホットな話題ですが、初心者にとっては少し複雑で難...

...