警戒するのは困難:真剣な AI 研究がいかにしてコンピューター生成ポルノに変わったのか?

警戒するのは困難:真剣な AI 研究がいかにしてコンピューター生成ポルノに変わったのか?

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)から転載したものです。

10 年前、画像認識などの最も基本的な AI アルゴリズムの一部には、データ センターに通常備わっているような計算能力が必要でした。現在、これらのツールはスマートフォンでも利用可能であり、より強力で洗練されています。

原子力やロケット推進と同様に、AI は「二重使用」技術と見なされており、メリットとデメリットの両方をもたらす可能性があることを意味します。

[[356918]]

少し前、Vice は人工知能によって引き起こされる被害の最新例を報じました。プログラマーが性的虐待画像を使用して、ポルノを作成するアルゴリズムをトレーニングしているというものです。報告書では、匿名の博士課程の学生がどのようにして同意のない画像をデータセットにまとめ、それを既存のアルゴリズムと組み合わせてカスタムビデオを生成したかを詳しく説明しています。

人工知能を使ってポルノ作品を生成するクリエイターは、それらの作品をPornhubやOnlyFansなどのプラットフォームで公開しています。彼はViceに対し、Nvidiaが構築したオープンソースアルゴリズムであるStyleGAN2を使用したと語った。非常にリアルな偽の顔をオンラインで見たことがある場合(ThisPersonDoesNotExist.com などの Web サイト)、それらは StyleGAN2 によって生成された可能性が高いです。

この技術は一夜にして生まれたものではありません。 AI 生成ポルノというこの現象に至るまでには、いくつかの最も初期の現代的な画像生成アルゴリズムから始まる明確な道筋があります。

[[356919]]

画像出典: ゲッティイメージズ

生成的敵対ネットワーク (GAN) への飛躍

2014 年には、画像生成アルゴリズムの機能が飛躍的に進歩し、敵対的生成ネットワーク (GAN) が誕生しました。これは、イアン・グッドフェローという名の人工知能研究者が、バーで他の人々と議論しているときに思いついたアイデアです。アルゴリズム同士を競争させて、最良の結果を生み出すというものです。

画像を生成するには、「ジェネレータ」と「ディスクリミネーター」が必要です。ジェネレーターは画像を生成し、識別器はトレーニング中に表示された実際の画像に基づいて、画像が本物か偽物かを判断します。識別器は最もリアルな画像のみを受け入れるため、最終結果は AI によって生成された最高の画像になります。

テクノロジーを役立てる

グッドフェロー氏による生成的敵対ネットワークに関する初期の研究は、業界のベンチマークでは良好な結果を示しましたが、彼が作成した画像の多くは、依然として受け入れがたいほど乱雑に見えました (作成者のアイデアを抽象的かつ非人間的な方法で表現していた)。

2016年には、他の研究者らがこの技術の実験を開始し、低解像度ではあるもののリアルな画像を生成する方法を発見した。当時、研究者が寝室のリアルな画像をどのように生成したか、また人間の顔を生成する最初の試みについて説明した優れた論文がありました。

この研究は、生成的敵対ネットワークがトレーニング中にさらされるデータに基づいて適応できることを改めて実証しています。この技術により、寝室のリアルな画像や顔のリアルな画像を生成することができました。つまり、生成的敵対的ネットワークは、さまざまな種類の画像のパターンを実際に認識できるということです。

ディープフェイクは一般的になりつつある

生成的敵対ネットワーク アーキテクチャに基づいて、人間の顔を合成するためのさまざまな無料およびオープン ソースの方法が現在存在します。 Amazon Web Services (AWS) や Google Cloud などのクラウド サービスがより利用しやすくなるにつれて、これらのアルゴリズムをトレーニングする機能もより利用しやすくなりました。

人工知能研究の分野で最も有名なのは、Nvidia チームによって開発された StyleGAN です。このアプリは2018年12月にリリースされ、偽の顔の非常に高品質な画像を生成できたものの、奇妙なぼやけやデジタルアーティファクトが残っていました。それから1年も経たないうちに、Nvidia チームは StyleGAN2 をリリースしました。

これらのぼやけやアーティファクトを防ぎ、画像の忠実度を向上させるために、このリリースでは、さまざまなドメインに適応できるアルゴリズムのアーキテクチャが修正されています。アルゴリズムをポルノ画像(顔だけではなく)でトレーニングすることで、システムはおそらく生成するつもりのなかったものを生成できるようになります。

生成的敵対的ネットワークは、DeepFaceLab や Wav2Lip などのオープンソース プロジェクトを通じてディープフェイクを専門にするためにも使用されてきました。これらのサービスを使用するのは非常に簡単です。Wav2Lip プロジェクトの Web サイトから、たった 1 行のコードでビデオ キャラクターを任意のオーディオ ファイルに自動的にリップシンクする方法を学ぶことができます。

これらの技術はまだ初期段階ですが、今後さらに洗練され、説得力のあるものになるでしょう。確かに興味深いアプリケーションもありますが、これらのアルゴリズムは、悪事を企む隠れた動機を持つ人々によって簡単に悪用されるようになっているようです。何も対策を講じなければ、ディープフェイクの害が娯楽としての価値を上回る可能性がある。

<<:  UiPath Carnivalは職場の自動化におけるイノベーションを探るために近日開催されます

>>:  NLP の学習を始める準備ができました。体系的に読むべき本やコースは何ですか?

ブログ    
ブログ    
ブログ    

推薦する

...

AIがプログラマーの仕事を奪う:2040年にはAIがプログラマーに取って代わる可能性

米国のオークリッジ国立研究所の一部専門家は、2040年までにAI技術がプログラマーに取って代わるほど...

...

人工知能の急速な発展により、私たちは職を失うことになるのでしょうか?

音声制御システムから今日のいくつかの無人技術まで、人工知能は徐々に成熟しています。ビッグデータセンタ...

NLP フィールド インデックス ツール、3000 以上のコード ベース、論文や GitHub ライブラリのワンクリック検索

検索について言えば、学術的な検索も科学です。検索を上手に使いこなすと、必要な学術情報を素早く見つける...

業界の競争が激化する中、人工知能が経済のデジタル化をどう推進するかを見てみましょう。

新しいインフラストラクチャの配置が加速するにつれて、5G、モノのインターネット、クラウドコンピューテ...

機械に「忘却の呪文」をかける? Google、初の機械忘却チャレンジを開始

機械学習はよく話題になりますが、「機械の忘却」について聞いたことがありますか?機械学習の目的は誰もが...

掃除ロボットに抜け穴がある!あるいは数秒で盗聴ツールに変わる可能性もある

先日、陝西省西安市は「サイバーセキュリティは人々のためのものであり、サイバーセキュリティは人々に依存...

総合異常検知の新たな夜明け:華中科技大学などがGPT-4Vの総合異常検知性能を明らかに

異常検出タスクは、通常のデータ分布から大きく逸脱した外れ値を識別することを目的としており、産業検査、...

エージェントは人間のように協力し、「グループチャット」を通じて情報を交換することができます。

インテリジェントエージェントにも「標準マニュアル」が必要です。 MetaGPTと呼ばれる研究では、イ...

Belcorp CIO: AI による IT 研究開発の見直し

多国籍美容企業ベルコープは過去3年間、パンデミック、消費者行動の変化、サプライチェーンの混乱、インフ...

進化する決定木: 機械学習が生物学からヒントを得るとき

生物学(または生命科学)に対する理解は時間の経過とともに大きく深まり、多くのエンジニアにとって、困難...

Baidu World 2018 の開会式で最初の切り札が切られました。Baidu AI City が新しい世界への機関車としてスタートしました!

スマートカーからスマート道路、スマートシティまで、「複雑な世界をよりシンプルに」という百度の使命によ...

自動運転の倫理的ジレンマを解決する: 道徳規範を数式に変換する

暴走列車が線路を走っています。5人が線路に縛られており、列車に轢かれそうになっています。この時点で、...

自動運転車は生後7か月の赤ちゃんよりも賢いのでしょうか?

生後 7 か月までに、ほとんどの子供は、物体は見えなくても存在するということを学びます。おもちゃを毛...