指紋、顔、虹彩: 適切な生体認証技術を選択するには?

指紋、顔、虹彩: 適切な生体認証技術を選択するには?

[[351445]]

最近、クレジットカード会社からデータ漏洩に関する連絡がありましたか? あるいは、個人情報盗難の被害者ですか? 私たちの多くは、個人情報盗難の被害に遭ったことがあるか、被害に遭った人を知っています。多くの消費者は、ユーザーフレンドリーで安全な環境を求めています。企業は、有効な認証済みユーザーのみが重要なデータにアクセスできるようにする方法を見つけるのに苦労しています。貴社は、顧客満足度を確保しながら、これらのセキュリティと可用性の要件をどのように満たすことができますか?

現在、主な生体認証は指紋、顔、虹彩の3つで、それぞれに長所と短所がありますが、COVID-19の世界的大流行により、非接触型認証が非常に好まれています。自社の技術があらゆる用途に最適であると主張する企業は、おそらく無謀である。重要なのは、まず生体認証が必要であることを証明することです。これが決まったら、次の 5 つの手順で適切な生体認証方法とベンダーを選択できます。

生体認証は、ユーザーが知っている情報 (パスワード) やユーザーが持っている情報 (ID) から、ユーザーが何者であるか (生体認証) に移行することで、これらの問題に直接対処するメカニズムを提供できます。これにより、セキュリティが向上すると同時に、ユーザーフレンドリーになります。しかし、今後の製品に適した生体認証方法をどのように選択すればよいのでしょうか?

ユーザーインタラクション

まず、一般的なユーザー、通常または予想されるやり取り、製品サイトの環境と場所、戦略的取り組みなど、計画されている顧客使用モデルを定義します。ユーザーが着用するもの(マスクなど)、ユーザーの身長、衛生要件、オプトイン要件を考慮してください。 POC テスト中に生体認証がどのくらいの速さで応答する必要があるかを決定し、テストします。登録された画像(テンプレート)が優れているほど、マッチングのパフォーマンスと全体的なユーザー エクスペリエンスが向上します。

コストと安全性

まず、生体認証を使用する製品ラインを選択し、希望する価格帯を決​​定します。生体認証が製品にどのように適合するかを決定し、大量生産の単価を把握するために数量価格を取得します。ソフトウェアのライセンスは通常は有料ですが、通常は交渉可能です。生産量が増加すると、単位生産コストは減少します。価格目標を満たしながら、機能とセキュリティの要件を最も満たす生体認証方法を選択します。

必要な生体認証セキュリティのレベルは、保護対象の資産とそれに対応する使用モデルによって異なります。 1:1 モデル (携帯電話など) は、安全性の低い生体認証アプリケーションに適している場合があります。ただし、空港のセキュリティなどの 1:N モデルでは、より安全な生体認証 (虹彩など) が必要になります。

製品に最適な生体認証技術を選択するには、各社の他人受入率 (FAR) と他人拒否率 (FRR) を比較します。 FAR は侵入者を阻止する生体認証機能を指し、FRR は登録されたユーザーの入場を許可する生体認証機能を指します。検討する生体認証会社が少なくともこの情報を提供できるかどうかを確認してください。各企業について、FAR と FRR が相対的にどのように変化するかを示す検出エラー トレードオフ (DET) 曲線を取得するのが最適です。

犯罪行為

ハッカーや犯罪者は、生体認証を含むテクノロジーを突破しようと常に試みています。各テクノロジに強力なプレゼンテーション攻撃検出 (PAD) 機能があることを確認します。理想的には、サードパーティによって認定されている必要があります。個人を特定できる情報 (PII) を取得する必要があるかどうかを理解し、誰がデータを管理するか (つまり、自社、生体認証ベンダー、または別のサードパーティ) を含め、PII をどう処理するかを決定します。 PII を管理する人が最新の暗号化標準を使用し、メモリ内、ネットワーク全体、生体認証データベース内のこのデータを保護するためのテクノロジを採用していることを確認します。適用される欧州 GDPR コンプライアンス標準を理解することも重要です。

サプライヤーの考慮事項

検討対象の各ベンダーは、POC テスト プロセス全体を通じて評価する必要があります。サプライヤーが信頼でき、優れた顧客サポートを提供し、約束を守っていることを確認してください。サプライヤーのエンジニアリング能力とサポート モデルを評価して、必要な設計変更をサポートし、エンジニアが機能的で高品質な製品を提供できることを確認します。

実際のユースケースに適した生体認証を選択するには、ある程度の時間と労力がかかりますが、ビジネスを成長させ、顧客を満足させる可能性を秘めています。プロセスを省略したり、調査もせずに安価なソリューションを選択したりしないでください。諺にあるように、支払った金額に見合ったものが得られます。

<<:  ターゲット検出アルゴリズムにおける正長方形と不規則四辺形 IOU の Python 実装

>>:  機械学習の未来はここにある:ガウス過程とニューラルネットワークは同等である

ブログ    

推薦する

Meta が言語認識システムをオープンソース化、6 言語でのリップ リーディング翻訳モデル認識、誰でもローカル展開可能

今年初めにネットで人気を博した反ギャングドラマ「光弗」をまだ覚えているだろうか。最後の数話で監督がス...

AIアートがブームになっていますが、今後はどうなるのでしょうか?

[[279415]]この記事のイラストはすべて、AIアートの第一人者であるドイツ人アーティスト、マ...

TFとPyTorchだけを知っているだけでは不十分です。PyTorchから自動微分ツールJAXに切り替える方法を見てみましょう。

現在のディープラーニング フレームワークに関しては、TensorFlow と PyTorch を避け...

AI を医療業界のあらゆる側面に深く統合するにはどうすればよいでしょうか?

[[319366]]将来的には、医療エコシステムを中心として、人工知能が医療システムのあらゆる側面...

機械学習ガバナンスとは何ですか?

なぜ組織は機械学習のガバナンスに苦労するのでしょうか? 組織の機械学習ガバナンスに取り組もうとすると...

...

機械はどのように学習するのでしょうか?人工知能の「双方向戦闘」を詳しく解説

金庸の武侠小説『射雁英雄伝』には、桃花島に閉じ込められた「悪童」周伯同が「左右の格闘術」を編み出した...

AIとビッグデータ2017「成長痛」

2017 年、人工知能とビッグデータの開発では次の 10 の成長痛が発生しました。 [[21567...

人工知能は核爆弾と同じくらい人類にとって脅威なのでしょうか? AI脅威理論の謎を解く

新たに世界一の富豪となり、テスラのCEO、そしてテクノロジー界の大物となったマスク氏は、ロボットが近...

ChatGPT が個人情報を含むトレーニングデータを吐き出す: DeepMind が論争を巻き起こす大きなバグを発見

ChatGPT がおかしくなるまで 1 つのことを実行するように要求し続けると、どうなるでしょうか?...

CUDA と TensorRT モデルの展開の最適化: 重要な考慮事項と実践的な戦略

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

AIによって非効率と判断され、150人の労働者が解雇された。「労働者をコントロールできるのはまさに人工知能だ」

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

AI を理解する: 人工知能システムで説明可能性を追求する理由

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...

Tongyi Qianwenが再びオープンソース化、Qwen1.5は6つのボリュームモデルを導入、そのパフォーマンスはGPT3.5を上回る

春節の直前に、同義千文モデル(Qwen)バージョン1.5がリリースされました。今朝、新バージョンのニ...

目に見える機械学習: ニューラルネットワークをゼロから理解する

機械学習に関する古いジョークがあります。機械学習は高校のセックスのようなものです。誰もがやっていると...