Sentinel のコールドスタート電流制限アルゴリズム

Sentinel のコールドスタート電流制限アルゴリズム

[[336019]]

コールド スタート アルゴリズムは、トークン バケット アルゴリズムに基づいて実装されます。

トークン バケット アルゴリズムの原理は、一定のレートでトークンをトークン バケットに入れて、リクエストを受信したときにトークン バケットからトークンを申請することです。トークンを取得したリクエストのみが承認されます。トークン バケットがいっぱいになると、余分なトークンは破棄されます。トークン バケットが空になると、要求はトークンを取得できず、拒否されます。

たとえば、トークン バケット アルゴリズムを使用してインターフェイスの最大 QPS を 200 に制限する場合は、5 ミリ秒ごとにトークンを生成してトークン バケットに入れる必要がありますが、トークンを生成してトークン バケットに入れる速度は変わりません。

コールド スタート アルゴリズムは、トークン バケットのトークン生成率、つまり各トークンの生成の時間間隔を制御するために使用されます。

コールド スタートの継続時間が 10 秒、初期状態がコールド スタート状態、現在の制限しきい値が 200QPS であると仮定します。通常の状況では、トークン生成レートは 5 ミリ秒/トークンである必要があります。コールド スタート フェーズでは、レートは最小値から 5 ミリ秒/トークンに増加します。最小レートは、コールド スタート係数とコールド スタート サイクルの継続時間に関連します。

Sentinel は Guava とは実装が異なります。Sentinel はパフォーマンスを考慮して各リクエスト間の時間間隔を制御せず、1 秒あたりに通過できるリクエストの数のみを制御します。

コールド スタート アルゴリズムを理解するには、次の図を使用します。

軸:

  • 横軸のstoredPermitsはバケット内のトークンの数を表します。
  • 縦軸はトークンを取得するために必要な時間、つまりリクエストが通過する時間間隔を表します。

stableInterval: 安定したトークン生成の時間間隔。現在の制限しきい値 QPS が 200 であると仮定すると、stableInterval の値は 5 ミリ秒になります。

coldInterval: コールド スタート トークン生成の最大時間間隔。これは、安定したトークン生成の時間間隔にコールド スタート係数 (stableInterval * coldFactor) を掛けたものに等しくなります。Sentinel の coldFactor のデフォルト値は 3 です。

warmupPeriod: ウォームアップ時間、つまりコールド スタート期間。上図の台形領域に相当します。Sentinel のデフォルト値は 10 秒です。

thresholdPermits: コールド スタートから通常までのトークン バケット内のトークン数のしきい値。トークン バケット内のトークン数がこの値を超えると、コールド スタート フェーズが開始されます。

coldFactor のデフォルトは 3 なので、(coldInterval - stableInterval) は stableInterval の 2 倍となり、thresholdPermits から 0 までの時間は maxPermits から thresholdPermits までの時間の半分となり、コールド スタート期間の半分になります。台形の面積はwarmupPeriodに等しいため、長方形の面積は台形の面積の半分となり、長方形の面積はwarmupPeriod / 2となります。

長方形の面積の公式によると:長さ×幅=面積

以下が得られます:

  1. しきい値許可 = 0.5 * ウォームアップ期間 / 安定間隔

maxPermits: バケットに保存できるトークンの最大数。

台形の面積の公式によると:(上端の最低値+下端の最低値)×高さ/2

以下が得られます:

  1. warmupPeriod = (安定間隔 + コールド間隔) * (最大許可数 - しきい値許可数) / 2

ロールアウトする:

  1. maxPermits = thresholdPermits + 2 * warmupPeriod / (stableInterval + coldInterval)

傾き: 線の傾き、つまりトークンが生成される速度。

傾きの計算式 (y2-y1) / (x2-x1) によれば、次のようになります。

  1. 傾き = (coldInterval - stableInterval) / (maxPermits - thresholdPermits)

Sentinel は 1 秒に 1 回トークンを生成し、新しく生成されたトークンをトークン バケットに入れて、このトークン生成の時刻を記録します。次のトークン生成を実行すると、現在の時刻と最後のトークン生成の間の時間間隔と、各トークンの生成間隔に基づいて、この生成に必要なトークンの数が計算されます。

サービスが初めて起動された場合、またはインターフェイスが長時間アクセスされていない場合、現在の時刻はトークンが最後に生成された時刻からかなり離れています。そのため、最初のトークン生成では maxPermits 個のトークンが生成され、トークン バケットが直接満たされます。トークン バケットがいっぱいなので、次の 10 秒間はコールド スタート フェーズになります。

コールド スタート フェーズでのトークン生成間隔は通常の消費速度よりも遅いため、時間が経つにつれて、バケット内の残りのトークンの数は thresholdPermits に近づき、トークン生成間隔も coldInterval から stableInterval に減少します。バケット内の残りのトークンの数が thresholdPermits 未満になると、コールド スタートが終了し、システムは安定状態になります。トークンを生成する時間間隔は stableInterval で、1 秒あたりに生成されるトークンの数は QPS に等しくなります。

Sentinel は、リクエストが渡されたときにトークン バケット内のトークンの数を減らしません。代わりに、次の 1 秒間に新しいトークンを生成するときに、前の 1 秒間に渡されたリクエストの数と同じ数のトークンをバケットから減算します。これは、Sentinel が正式に自動トークン ドロップと呼んでいるものです。

Sentinel は、各リクエストが通過するときにトークン バケットからトークンを取得しません。では、Sentinel はどのようにして QPS を制御するのでしょうか。別の図を見てみましょう。

x1: 現在のトークン バケット内で、thresholdPermits を超えるトークンの数。

y1: y1 に stableInterval を加えた値が現在のトークン生成時間間隔に等しくなります。

傾きと x1 に基づいて、y1 を計算できます。

  1. y1 = 傾き * x1

y1 に stableInterval を加えた値が現在のトークン生成率です。

トークンを生成する現在の時間間隔(秒単位)は次のとおりです。

  1. 傾き * (保存トークン - しきい値許可) + 安定間隔

理由: stableInterval = 1.0 (1秒) / 現在の制限しきい値 (カウント)

したがって、上記の式 = 傾き * (storedTokens - thresholdPermits) + 1.0 / count

最後に、現在のタイムスタンプの QPS しきい値は次のように計算されます。

  1. 1.0 / 傾き * (保存トークン - しきい値許可) + 1.0 /カウント 

参考文献:

[1] Guava RateLimiter分析:

https://blog.wangqi.love/articles/Java/Guava%20RateLimiter%E5%88%86%E6%9E%90.html

この記事はWeChatの公開アカウント「Java Art」から転載したものです。以下のQRコードからフォローできます。この記事を転載する場合はJava Art公式アカウントまでご連絡ください。

<<:  人工知能「トレーナー」がAIをより賢くする

>>:  機械学習プロジェクトに必須: エンドツーエンドの機械学習プロジェクト開発プロセスのタスクリスト

ブログ    

推薦する

2019 年のインターネット キャンパス採用の給与が発表されました。いくらもらえるか見てみましょう!

2019年秋学期のキャンパスリクルートメントは終了に近づいています。近年、特にインターネット業界で...

AI がエッジ コンピューティングと IoT をよりスマートにする方法

[[391125]]エッジで AI を導入すると、ネットワークの遅延と運用コストを削減できるだけでな...

2019 年の Web 開発のトレンド トップ 10

[[279047]] [51CTO.com クイック翻訳] 今日、さまざまな新しいトレンドの出現に...

...

プログラマーの芸術: ソートアルゴリズムのダンス

1. バブルソート 2. シェルソート 3. 選択ソート 4. 挿入ソート 5. クイックソート 6...

1 つのバグが原因で 200 億ドルの損失が発生しました。ビジネス異常検出システムを構築するにはどうすればよいでしょうか?

【51CTO.comオリジナル記事】 1. AI ビジネス異常検出システムが必要な理由企業は、業務...

2024 年の産業用ロボットのトップ 10 のトレンドとイノベーション

産業用ロボットの世界では、イノベーションのペースが加速し続けており、毎年、製造、自動化、作業の方法を...

Tech Neo 9月号:アルゴリズムに基づくIT運用・保守

51CTO.com+プラットフォームは、オリジナルの技術コンテンツの選択と絶妙なレイアウトを通じて、...

顔を自由に編集! Adobe が新世代の GAN アーティファクトを発表: 最大 35 の顔属性の変更をサポート

画像合成における重要な問題は、画像内のエンタングルメント問題です。たとえば、人物の顔にあるすべてのひ...

人工知能はまだ長い道のりを歩んでいる

過去2年間で、「スマートホーム」はほぼすべての家電メーカーが必ず話題にし、自社製品になくてはならない...

人工知能オンライン機能システムのデータアクセス技術

1. オンライン機能システム主流のインターネット製品では、古典的な計算広告、検索、推奨から、垂直分野...

...

コンテンツ マーケティングにおいて自然言語処理はどのように機能しますか?

[[417909]] [51CTO.com クイック翻訳]自然言語処理 (NLP) はコンテンツ ...

...

2019 年に学ぶべき 10 個の機械学習 API

最近では、携帯電話の写真からメールの受信トレイのフィルターまで、機械学習はあらゆるところに存在してい...