機械学習の背後にある数学的な柱を理解するには、この 5 冊の本が役立ちます。

機械学習の背後にある数学的な柱を理解するには、この 5 冊の本が役立ちます。

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)から転載したものです。

オープンソースの機械学習およびディープラーニング フレームワークの爆発的な増加により、機械学習は開発者だけが利用できるツールから、広く採用されるアプローチへと変化しました。今日、機械学習の分野はかつてないほどアクセスしやすくなりました。同時に、これは私たちが現在経験しているテクノロジーの驚異的な発展にも貢献しています。

アルゴリズムが実際にどのように機能するかを理解することで、機械学習システムの設計、開発、デバッグにおいて大きな利点が得られます。数学を考えると身震いする人は多く、機械学習には多くの数学が関係するため、この作業は多くの人にとって困難なものとなるかもしれません。

しかし、機械学習の分野では数学が障害になるべきではありません。逆に言えば、機械学習を習得するには数学をしっかり学ぶことが非常に重要です。大まかに言えば、機械学習には線形代数、確率論、多変量解析、最適化理論という 4 つの主要な数学の柱が関係しています。

これらのコア理論の強固な基盤を構築し、最先端の機械学習アルゴリズム (畳み込みネットワーク、生成的敵対的ネットワークなど) の内部の仕組みを理解するには時間がかかり、午後 1 日で完了できるものではありません。

しかし、時間を投資し続けることで、短期間で多くのことを学ぶことができます。この記事では、私にとって最も役に立った 5 冊の本を選びました。皆さんにとっても役立つことを願っています。

1. 「線形代数はこのように学ぶべきだ」 - シェルドン・アクラー

線形代数が「伝統的な」方法(最初に行列式と行列を学び、次にベクトル空間を学ぶ)で教えられると、初心者には難しすぎて、線形代数は美しいが難しい科目になってしまいます。

指導の順序を変えると、コースは非常に直感的で明確になります。この本は、非常にわかりやすく洞察力のある方法で線形代数を紹介しています。最初から古い方法ではなくこの本で線形代数を学んでいればよかった。

2. 「ディープラーニングによるコミュニケーション」 — アンドリュー・トラスク

\ [[331682]]

この本はこのリストの中で私のお気に入りです。 1 冊の本しか読む時間がない場合は、必ずこの本を読んでください。

この本には、コード スニペットを主な資料として、ニューラル ネットワークの内部の仕組みを徹底的に実践的に紹介する内容が含まれています。この本は特に高度な数学に関するものではありませんが、この本を読んだ後は、データ サイエンティスト、機械学習エンジニア、その他の開発者の 95% よりもディープラーニングの数学について詳しく知ることができます。

ニューラル ネットワークをゼロから構築することもできます。これはおそらく、練習に最適な方法です。機械学習でニューラルネットワークを構築し始めたとき、NumPy を使用して畳み込みネットワークもゼロから構築しました。

3. 確率論: 熱心な初心者向け - デビッド・モーリン

[[331683]]

機械学習に関する書籍のほとんどは、確率論を適切に紹介しておらず、わかりにくい表記法で満ちており、密度関数と離散分布を混同していることがよくあります。確率論についての背景知識がしっかりしていないと、読者が理解するのは困難です。

この本は、確率論についての詳細かつ正確で、シンプルで明確な入門書です。これは、確率論に関する事前の知識がない学習者に適しています。

4. 多変数微積分 — Denis Oulu (MIT OpenCourseWare より)

これは書籍ではなく、MIT の多変数微積分に関する大学講義の録画版で、一般に公開されています。私が知っているすべてのリソースの中で、このコースは、このテーマの入門としては群を抜いて優れています。

単変数微積分学の経験がある学生にとって、このコースは素晴らしい補足となりますが、それがなくても学生は簡単に理解することができます。唯一の欠点は、ニューラル ネットワークの基礎となる勾配降下アルゴリズムをカバーしていないことです。

5. ディープラーニング — イアン・グッドフェロー、ジョシュア・ベンジオ、アーロン・クールビル

機械学習の分野で最も才能のある人々によって書かれたこの本には、上記の理論がすべて含まれており、ディープラーニングの研究者や開発者にとって頼りになるリソースです。この本は、数学理論と重機を組み合わせて、畳み込みネットワークや再帰型ネットワーク、オートエンコーダなどの最新のディープラーニング手法への確かなガイドを提供します。

一番良い点は、この本をオンラインで無料で読むことができることです (https://www.deeplearningbook.org/)。

私が挙げた本の中で、この本はおそらく最も理解するのが難しいでしょう。ディープラーニングを理解するには、確率的な観点からアルゴリズムを見る必要がありますが、これはやや難しいです。

[[331684]]

画像ソース: unsplash

これらの本を読破するのは決して簡単ではありませんし、多くの時間もかかるかもしれませんが、私を信じてください。必ず何かが得られるはずです。知識を得ることは最高の投資です。この知識は、機械学習システムを構築するときに大きな利点をもたらします。言うまでもなく、機械学習の背後にある理論はそれ自体が美しく魅力的です。

<<:  複雑なネットワーク分析の効率を向上!中国の科学者が強化学習の新しい枠組みを開発

>>:  5Gの導入により、インテリジェント交通は4つの大きな質的変化をもたらします。

ブログ    
ブログ    
ブログ    

推薦する

このトリックにより、トランスフォーマーの推論速度が4.5倍になり、数十万ドルを節約できます。

[[443226]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitA...

AIに関する4つの最も一般的な誤解

[[398369]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

AIがITリーダーにコストの最適化とリスクの軽減をどのように支援するか

AI は近い将来、IT リーダーにとって最優先事項となる可能性が高いものの、レポートでは、世界中で経...

Google の家庭用ロボットがスタンフォード大学のエビ揚げロボットに挑む!猫と遊ぶためにお茶と水を出し、3回続けてフリックして猫と遊ぶ

インターネット上で話題となったスタンフォード大学のエビ揚げロボットは、1日で人気が急上昇した。結局の...

ビジネス界におけるAIと自動化の変革的役割

人工知能や自動化などの破壊的技術の急速な発展により、現代の企業は変化しています。これらのテクノロジー...

自動化された機械学習: よく使われる 5 つの AutoML フレームワークの紹介

AutoML フレームワークによって実行されるタスクは、次のように要約できます。データを前処理して...

...

Google の新しい AI ツールが人間のコールセンター従業員に取って代わる可能性があります。

[[237962]]海外メディアの報道によると、Googleは本日開催されたCloud Nextカ...

脳卒中の診断と治療を加速させるAIの登場

ディープラーニングは人工知能の一種です。医療分野では、CTスキャン画像を使用して脳の血液供給動脈の閉...

機械学習の再考: 人工知能はどのようにして「記憶を失う」ことを学ぶのか?

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

地下鉄乗車時の「顔認識」:AI専門家にとって新たな金鉱

[[276754]]業界のすべての実務者が合意に達することはまれですが、AI業界は例外です。ほぼすべ...

ディープラーニングの「記憶喪失」に応えて、科学者たちは類似性に基づく重み付けインターリーブ学習を提案し、PNASに掲載された。

人間とは異なり、人工ニューラル ネットワークは新しいことを学習するときに以前に学習した情報をすぐに忘...

機械学習モデルの解釈可能性について

2019年2月、ポーランド政府は銀行法に改正を加え、信用判定に否定的な結果が出た場合に顧客に説明を求...

Python の基本 + モンテカルロ アルゴリズム (ソース コード付き) を使用して、順列と組み合わせに関する質問を共有します。

[[433465]]みなさんこんにちは。私は Python の専門家です。この記事のタイトルを考え...