機械学習におけるモデルドリフト

機械学習におけるモデルドリフト

今日、機械学習モデルはビジネス上の意思決定の主な原動力となっています。他のビジネス戦略と同様に、これらの機械学習モデルも時間の経過とともに変更する必要があります。その背後にある技術的な理由は「モデルドリフト」です。ほとんどのコース、記事、投稿では機械学習 (ML) ライフサイクル (データの収集から始まり、機械学習モデルのデプロイで終わる) について説明していますが、ML ライフサイクルの非常に重要な特性であるモデルドリフトについて忘れられていることがよくあります。

モデルドリフトの本質は、ターゲット変数と独立変数の関係が時間の経過とともに変化することです。このドリフトにより、モデルは不安定になり、予測は時間の経過とともに一貫して間違ったものになります。

ドリフトタイプ

モデルドリフトは 2 つの主要なカテゴリに分けられます。

1 つ目は「コンセプトドリフト」と呼ばれます。これは、ターゲット変数自体の統計特性が変化した場合に発生します。当然のことながら、予測しようとしている変数の意味が変わった場合、更新された定義ではモデルはうまく機能しなくなります。

2番目で最も一般的なのは「データドリフト」です。これは、予測変数の統計特性が変化するときに発生します。同様に、基礎となる変数が変化すると、モデルは必ず失敗します。これが起こる典型的な例は、季節性によりデータのパターンが変化する場合です。夏に機能するビジネスモデルが何であれ、冬には機能しない可能性があります。休暇期間中は航空便の需要が急増するが、航空会社はオフシーズン中の旅客輸送量を維持するのに苦労している。もう 1 つの例として、個人の好みが変わると、ショッピング データも変わります。

どうすれば解決できるでしょうか?

この問題を解決する最善の方法は、モデルを継続的に再調整することです。過去の経験に基づいて、モデルドリフトの開始を推定できます。これを基に、機械学習モデルを再開発して、ドリフトによって生じるリスクを軽減することもできます。

データの重みは、データが時間の経過とともに変化する状況に適しています。たとえば、最近のトランザクションは、最近のトランザクションに重みを付け、過去のトランザクションに重みを少なくする機械学習モデルの機能を決定するために使用できます。これにより、機械学習モデルの堅牢性が保証されるだけでなく、ドリフトに関連する潜在的な問題を回避するのにも役立ちます。

モデルドリフトに対処するためのより洗練されたアプローチは、変更自体をモデル化することです。最初に開発されたモデルは静的に保たれ、ベースラインとして機能しました。最近の取引データの動作の変化に基づいて、新しい機械学習モデルを構築し、このベースライン モデルの予測を修正できます。

モデルをどのくらいの頻度で再トレーニングする必要がありますか?

最も一般的な解決策はモデルの継続的な再トレーニングであることがわかりましたが、次に疑問が生じます。これはどのくらいの頻度で行う必要があるのでしょうか。これには複数の解決策があり、それぞれ状況によって異なります。

問題が発生するのを待つのは最善のアプローチではありませんが、新しいモデルに関してはそれが唯一の選択肢です。問題が発生した場合は、それを調査し、将来的に問題が発生するのを防ぐために修正を加えることができます。

モデルに含まれるエンティティ データに季節パターンがある場合は、季節に基づいてモデルを再トレーニングする必要があります。たとえば、ホリデー シーズン中の支出の増加に伴い、組織はこの突然のパターンの変化に対処するための特別なモデルを構築する必要があります。

ドリフトを検出する最良の方法は、継続的な監視です。モデルの安定性に関連するメトリックは、継続的な時間間隔で監視する必要があります。分野やビジネスに応じて、この間隔は 1 週間、1 か月、四半期などになります。監視モードは手動でも、突然の異常が観察されたときにアラートや通知をトリガーする自動スクリプトでもかまいません。

やっと

哲学者ヘラクレイトスの有名な言葉に「変化だけが唯一不変である」というものがあります。こうした変化を受け入れ、監視する準備ができている組織は、必ず成功するでしょう。

<<:  TFとPyTorchだけを知っているだけでは不十分です。PyTorchから自動微分ツールJAXに切り替える方法を見てみましょう。

>>:  ドローンは諸刃の剣でしょうか?それでは5Gを追加した後をご覧ください!

ブログ    
ブログ    
ブログ    

推薦する

Redis Chat (1): ナレッジグラフの構築

シナリオ: Redis インタビュー[[264477]] (インターネットからの写真)面接官: あな...

ロボットシェフはトマト入りスクランブルエッグ9品を試食した後、味覚マップを描いた。

5月7日のZhidongxiによると、英国ケンブリッジ大学の研究者らは最近、シェフの調理過程を模倣...

...

...

人工知能の雇用に関するレポートによると、GenAI は米国のほぼすべての仕事に影響を与えるだろう

世界有数の求人サイトおよび採用プラットフォームである Indeed は、Indeed AI 求人レポ...

機械学習と従来のプログラミングの違いについて話す

[[264779]] AI と ML は誇張されすぎていて、if 文を書いたりプログラミングに関係す...

コミュニティオーナーの中には顔認識に抵抗する人もいる。「私が家にいないときは、すべて知っている」

Chinanews.com 北京、12月29日(記者 呉涛)最近、一部のユーザーからChinane...

Go 向けに設計された機械学習ライブラリ Gorgonia: TensorFlow や Theano のライバル

[[184558]] Gorgonia は、Go での機械学習を容易にし、多次元配列を含む数式の記述...

...

...

人工知能は製造業の未来をどのように変えるのでしょうか?

ある研究機関が最近発表した調査報告によると、2022年までに人工知能が製造業にもたらす価値は23億ド...

音声認識が検索ボックスに取って代わり、人工知能が3つの主要な応用分野で主導権を握る

マイクロソフトのレドモンド研究所の副社長であるデュメイス氏は、ディープラーニング技術が2017年にオ...

2021年のAIに関する10の大胆な予測

2020年は忘れられない年です。今年に入って、新型コロナウイルスの感染拡大に伴い、人工知能(AI)が...

Google のロボット工学プログラムは度重なる失敗からどのような教訓を得たのでしょうか?

Google は再びロボットの製造を開始する予定です。 。 。このニュースを伝えたとき、私は Go...