2022年、PyTorchはトップAIカンファレンスの80%を占める

2022年、PyTorchはトップAIカンファレンスの80%を占める

2012 年にディープラーニングが再び注目されて以来、初期の学術フレームワークである Caffe や Theano から、後の PyTorch や TensorFlow まで、多くの機械学習フレームワークが研究者や業界従事者の新たなお気に入りとなっています。

2018年末、Googleは新しいJAXフレームワークをリリースし、その人気は着実に高まっています。多くの研究者は、TensorFlow などの多くのディープラーニング フレームワークに取って代わることができると期待し、大きな期待を寄せています。

しかし、PyTorch と TensorFlow は依然として ML フレームワークの分野で強力な 2 つの存在であり、他の新興フレームワークの力は当面これらに匹敵することはできません。 PyTorch と TensorFlow の関係は、一方が利益を得て、他方が損失を被るという関係であり、その力関係も静かに変化しています。

2019 年 10 月、コーネル大学の学部生であり、かつて PyTorch チームのインターンを務めていた Horace He 氏が、学術界における PyTorch と TensorFlow の使用に関するデータをまとめました。結果から、研究者が大勢 PyTorch に集まっていたことが分かりましたが、当時は TensorFlow が依然として業界の第一の選択肢であったようです。

下の図に示すように、2019 年半ば以降、カウントされたすべてのトップカンファレンスで、PyTorch の使用率が TensorFlow を上回っています。

データ収集時期: 2019年10月。

当時、開発者コミュニティでは、今後の ML フレームワークの競争で「ハイライト」となるのは誰か、という議論が白熱していました。2 年後、Horace He 氏は再び最新の統計結果を発表しました。

これまでのところ、PyTorch は EMNLP、ACL、ICLR の 3 つのトップ カンファレンスの 80% 以上を占めており、このシェアは他のカンファレンスでも 70% を超えています。わずか 2 年で、TensorFlow の生存空間は大幅に縮小されました。

学術界における PyTorch の「追い越し」

各トップカンファレンスについて、著者はグラフで詳細なデータも示しています。

CVPRを例に挙げてみましょう。CVPR 2018以前は、TensorFlowの使用率はPyTorchよりも高かったのですが、翌年には状況が一気に逆転しました。

CVPR 2019では、PyTorchの使用率は22.72%(論文数294件)、TensorFlowの使用率は11.44%(論文数148件)でしたが、CVPR 2020では、これら2つの数字はそれぞれ28.49%(論文数418件)、7.7%(論文数113件)となりました。

ICML、ICLR、NeurIPS などの会議でも、競争は依然として同じです。

PyTorch は大きくリードしていますが、TensorFlow は衰退し続けています。 ICLR 2022では、PyTorchの使用率は32.20%(1,091件)で、TensorFlowは6.14%(208件)と5倍の差が開きました。

TensorFlow は学術界でまだ将来性があるのでしょうか?

では、片隅に退いた TensorFlow は、なぜ今日このような状況に陥ったのでしょうか。

Hackrnews コミュニティでは、このトピックが開発者の間で白熱した議論を巻き起こしました。

「学術出版では、自分の研究を SOTA と比較できることが非常に重要です。自分の分野の他の全員が特定のフレームワークを使用している場合は、自分も同じことをすべきです。Pytorch は、私がここ数年間最も注目してきたフレームワークです。」

「しかし、Tensorflow が優れているのは静的グラフの領域です。モデルの密度が高まり、さまざまな部分を並列実行する必要が生じるようになると、PyTorch でモデルを実行する際にいくつかの課題が見られるようになりました。」

開発者の意見では、多くのことを並行して実行したい場合、Tensorflow には他の製品にはない機能がいくつかあります。それはあなたが何をしているかによって決まります。

Tensorflow の衰退は戦略的なミスによるものだと言う人もいます。

「Tensorflow は、初期のバージョンでは使いにくかったため、学術界では間違った選択をしたと思います。もちろん、そのパフォーマンスは常に PyTorch より優れていましたが、負荷の高い博士課程の学生の場合、コードが効率的かどうかよりも、コードが機能するかどうかの方が重要です。PyTorch は比較的デバッグしやすいと言う人もいたので、初期のモデルは PyTorch で公開され、その後多くの人が PyTorch に移行しました。」

どう思いますか?

<<:  人工知能は航空宇宙に貢献しており、我が国の有人宇宙計画の宇宙ステーションの軌道上建設ミッションは着実に前進している。

>>:  AI界隈で人気となっている1万語の記事だが、ルカン氏はタイトルが面白すぎると述べ、著者は「議論へようこそ」とツイートした。

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

カナダ工学アカデミー会員のソン・リャン氏:将来の人工知能システムはネットワークの形で存在するだろう

12月5日、国務院の承認を得て、科学技術部と河南省政府の共催により、12月6日から8日まで河南省鄭州...

携帯電話の顔認識はどのように機能しますか?理解を助ける記事

顔認証は一般的な生体認証の一種です。指紋認証と比較すると、顔スキャンは操作が簡単で、前面カメラを顔に...

...

...

心臓血管疾患における人工知能の応用

人工知能(AI)は、知識の学習、知識の保存、思考、計画という人間の脳の思考プロセスをシミュレートする...

...

人工知能は最終的に人間に取って代わるのでしょうか?現時点では、あらゆる面で人間を超えることは難しいでしょう。

ここ数年、人工知能技術が徐々に発展するにつれ、社会の中で人工知能に対するさまざまな見方が現れ始めまし...

MITのロボット犬がまた進化しました。砂利や氷の上でも滑らずに走れます。今回は本当に犬と同じくらい安定しています

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

作業の重複をなくしましょう! 30分で独自のディープラーニングマシンを作成する方法を教えます

[[327809]]画像ソース: unsplash繰り返し作業はいつも面倒です。新しいプロジェクトを...

仕事とAIの未来

[[340645]] [51CTO.com クイック翻訳] 人工知能が雇用に与える影響は、現在、さま...

...

AI はどのようにして既存の人間の偏見を強化するのでしょうか?

定義上、人工知能 (AI) は人間の脳の働きを模倣して組織活動を最適化することを目的としています。 ...

...

...

AIは古い建物のエネルギー効率を変えるでしょうか?

スマート ビルディングの観点から見ると、AI は多くの居住者向けテクノロジーに統合され、建物やキャン...