顔認識を使用してアバターにマスクとゴーグルを自動的に追加する方法

顔認識を使用してアバターにマスクとゴーグルを自動的に追加する方法

アバターにマスクとゴーグルを追加する

プロジェクトアドレス: https://github.com/Evilran/add-mask-and-goggle

序文

2020年の新型コロナウイルス肺炎が武漢で発生し、感染防止のため誰もがマスクを着用した。友達の輪も例外ではありません。多くのユーザーがアバターにマスクを付けていますが、写真の中でマスクの位置を調整するのに多くの時間がかかります。では、顔認識によってアバターにマスクやゴーグルを自動的に追加するにはどうすればよいでしょうか?

このプロジェクトは、顔認識技術を使ってアバターにマスクやゴーグルを自動的に追加し、皆さんにマスクやゴーグルを積極的に着用して、武漢と最前線で戦う医療従事者を応援するよう呼びかけるものです!

依存関係 🐍

始める前に、python3 に次のパッケージをインストールする必要があります。

  • numpy == 1.17.4 です
  • フラスコ>=1.0.0
  • リクエスト==2.22.0
  • opencv-python == 4.0.0.21 です
  • dlib==19.17.99

Flask はプロジェクト用のシンプルな Web サーバーを提供し、dlib は顔と唇と目 (マスクの位置を提供) を認識するために使用され、opencv ライブラリは顔の唇にマスク マテリアルを追加し、顔の目にゴーグルを追加できます。

Webサーバーを構築する

まず、Flask ライブラリをインポートしてメイン ページを構築します。

  1. FlaskからFlaskをインポート 
  2. フラスコのインポートリクエストから 
  3. Flaskからrender_templateをインポートする 
  4. @app.route('/',メソッド=['GET', 'POST'])  
  5. デフインデックス():  
  6. render_template('index.html') を返します  
  7. ----------------------  
  8. __name__ == '__main__' の場合:  
  9. アプリの実行()

当社のサーバーでは画像ファイルのアップロードのみが許可され、画像はキャッシュされないことに注意してください (ユーザーは他のマスクを選択して再作成できます)。そのため、次のように設定する必要があります。

  1. アプリ= Flask (__name__)  
  2. # 画像キャッシュをキャンセル 
  3. app.config['SEND_FILE_MAX_AGE_DEFAULT'] = timedelta(= 1 )  
  4. ALLOWED_EXTENSIONS =設定(['bmp', 'png', 'jpg', 'jpeg'])  
  5. UPLOAD_FOLDER = r './cache/'    
  6. app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER  
  7. def allowed_file(ファイル名):  
  8. ファイル名に「.」を返し、\  
  9. ALLOWED_EXTENSIONS内のfilename.rsplit('.', 1)[1]

当社の Web サーバーには 2 つのルートが含まれています。

  1. /url /追加

url は貼り付けられた画像のアドレスで、サーバーは自動的に画像をダウンロードします。add はユーザーが手動で画像をアップロードするためのものです (ユーザーが手動で画像をアップロードする必要がある場合は、requests ライブラリを導入する必要はありません)。

ルート追加機能のコードは次のとおりです。

  1. @app.route('/add',メソッド=['GET', 'POST'])  
  2. デフ検索():  
  3. request.method == 'POST'の場合:  
  4. ファイル= request.files ['画像']  
  5. モード= (int)(request.form['mask'])  
  6. isGoggle =リクエスト.form.get('goggle')  
  7. ファイルと allowed_file(file.filename) の場合:  
  8. パス= os .path.join(app.config['UPLOAD_FOLDER'], file.filename)  
  9. file.save(パス)  
  10. 出力= add (パス、ファイル.ファイル名、モード、isGoggle)  
  11. render_template を返します('index.html'、出力output = output)  
  12. それ以外:  
  13. return render_template('index.html', alert = 'ファイルタイプは画像でなければなりません!' )  
  14. それ以外:  
  15. render_template('index.html') を返します

次に、テンプレート内の index.html ファイルを設定します。詳細なコードについては、Github プロジェクトに移動してください。

顔認識

これで、Web サーバーの設定は完了です。次に、画像を処理するためのバックエンド コードの作成を始めましょう。 dlib および opencv ライブラリをインポートします。

  1. cv2をインポート 
  2. dlibをインポートする 
  3. numpyをnpとしてインポートする 
  4. インポートOS

トレーニング済みの Dlib 前方顔検出器 detector = dlib.get_frontal_face_detector() を使用して顔を検出し、'models/shapepredictor68facelandmarks.dat' を使用して口の 20 個の特徴点 (40 次元の特徴) の座標を抽出します。

  1. def get_mouth(画像):  
  2. img_gray = cv2.cvtColor (画像、cv2.COLOR_BGR2GRAY)  
  3. 検出器= dlib.get_frontal_face_detector ()  
  4. 予測子= dlib.shape_predictor ('models/shape_predictor_68_face_landmarks.dat')  
  5. =検出器(img_gray, 0)  
  6. enumerate(faces) の k, d について:  
  7. x = []  
  8. y = []  
  9. # 顔の大きさの高さ 
  10. 高さ= d.bottom () - d.top()  
  11. # 顔のサイズの幅 
  12. = d.right() - d.left()  
  13. 形状=予測子(img_gray, d)  
  14. 唇用#49-68  
  15. iが範囲(48, 68)内にある場合:  
  16. x.append(shape.part(i).x)  
  17. y.append(shape.part(i).y)
  18.   # 顔の大きさに合わせてマスクに対応するリップの面積を拡大 
  19. y_max = (int)(max(y) + 高さ / 3)  
  20. y_min = (int)(min(y) - 高さ / 3)  
  21. x_max = (int)(max(x) + 幅 / 3)  
  22. x_min = (int)(min(x) - 幅 / 3)  
  23. サイズ= ((x_max-x_min),(y_max-y_min))  
  24. x_min、x_max、y_min、y_max、サイズを返す

同じ方法で、顔の目の特徴を抽出します。

  1. get_eye(画像):  
  2. img_gray = cv2.cvtColor (画像、cv2.COLOR_BGR2GRAY)  
  3. 検出器= dlib.get_frontal_face_detector ()  
  4. 予測子= dlib.shape_predictor ('models/shape_predictor_68_face_landmarks.dat')  
  5. =検出器(img_gray, 0)  
  6. enumerate(faces) の k, d について:  
  7. x = []  
  8. y = []  
  9. 高さ= d.bottom () - d.top()  
  10. = d.right() - d.left()  
  11. 形状=予測子(img_gray, d)  
  12. iが範囲(36, 48)内にある場合:  
  13. x.append(shape.part(i).x)  
  14. y.append(shape.part(i).y)  
  15. y_max = (int)(max(y) + 高さ / 3)  
  16. y_min = (int)(min(y) - 高さ / 3)  
  17. x_max = (int)(max(x) + 幅 / 3)  
  18. x_min = (int)(min(x) - 幅 / 3)  
  19. サイズ= ((x_max-x_min),(y_max-y_min))  
  20. x_min、x_max、y_min、y_max、サイズを返す

唇と目の位置を特定した後、OpenCV を使用して透明な背景マスクとゴーグルのマテリアルを処理し、背景を白に変換します。

  1. img2 = cv2.imread ('masks/goggle.png', cv2.IMREAD_UNCHANGED)  
  2. img2 = cv2.resize (img2,サイズ)  
  3. アルファチャンネル= img2 [:, :, 3]  
  4. _、マスク= cv2.threshold (alpha_channel、220、255、cv2.THRESH_BINARY)  
  5. =画像2 [:, :, :3]  
  6. img2 = cv2.bitwise_not (cv2.bitwise_not(色、マスクマスク= マスク))

次に、画像の融合を実行し、取得した唇と目の位置にマスクとゴーグルを追加します。

  1. x_min、x_max、y_min、y_max、サイズ= get_eye (img1)  
  2. 行、チャネル= img2.shape  
  3. roi = img1 [y_min: y_min + 行、x_min: x_min + 列]  
  4. img2gray = cv2.cvtColor (img2、cv2.COLOR_BGR2GRAY)  
  5. ret、マスク= cv2.threshold (img2gray、254、255、cv2.THRESH_BINARY)  
  6. mask_inv = cv2.bitwise_not (マスク)  
  7. img1_bg = cv2.bitwise_and (roi,roi,マスクマスク= マスク)  
  8. img2_fg = cv2.bitwise_and (img2、img2、マスク= mask_inv )  
  9. dst = cv2.add (img1_bg、img2_fg)を使います。  
  10. img1[y_min: y_min + 行、x_min:x_min + 列] = dst

この時点で、顔認識にマスクとゴーグルを追加するコードが正常に完了しました。

デモ 😷

プロジェクトが完了したら、

Web サーバーを実行するのは、1 つのコマンドと同じくらい簡単です。

  1. $ python3 サーバー.py

次に、127.0.0.1:5000 (ポート 5000) にアクセスします。

ここでサポートされているモードは 2 つあります。1 つは URL アドレスを入力するモード、もう 1 つは画像を直接アップロードするモードです。

現在、マスクは次のタイプをサポートしています。

例えば:

元の画像:

マスクとゴーグルを追加します。

元の画像:

マスクを追加します:

ありがとう🙏

最前線で戦ってくださっている医療従事者の方々に感謝、そして春節の旅行ラッシュで逆風の中頑張ってくださっている方々に感謝!

<<:  AIのための大規模ストレージインフラストラクチャの要件

>>:  適切な AI データ ストレージを選択するための 6 つのガイドライン

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

AIとIoT:共生関係

Transforma Insights では、2020 年の大半を、最も優れた詳細な IoT 予測の...

Java プログラミング スキル - データ構造とアルゴリズム「分割統治アルゴリズム」

[[398991]]アルゴリズムの紹介分割統治アルゴリズムは非常に重要です。文字通りの説明は「分割...

人工知能の今後の発展はどうなるのでしょうか?

汎用人工知能の任務は、ユビキタスな視覚と聴覚を制御することです。「認識」を例にとると、汎用人工知能の...

DALL・Eは発売からわずか2日で復刻されたのか?公式論文はまだ発表されていないが、専門家らはすでにそれを再現している。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

快手は快易のビッグモデルの助けを借りてコメントエリアでのインテリジェントな返信を実現する「AI小快」をテスト中

快手は10月26日、「AI小快」アカウントの内部テストを正式に開始し、ショートビデオコメントエリアで...

2021 年の人工知能の最新動向を示す 15 のグラフ

2021年AIインデックスレポートは、スタンフォード大学の人間中心AI研究所と、ハーバード大学、経済...

...

人工知能技術が人の流れにおける個々の感染リスクを迅速に特定し、同済は伝染病予防・制御識別システムを開発

[[315277]]校門に設置されたカメラの前に立つと、システムは顔認識技術と現場での体温検知を組み...

2021年1月から2月までの中国人工知能の月次情報まとめ

[[389793]]国内人工知能産業への投資と資金調達の調査不完全な統計によると、過去2か月間に66...

...

Transformerが3Dモデリングに革命を起こし、MeshGPT生成結果がプロのモデラーやネットユーザーに衝撃を与える:革命的なアイデア

コンピュータグラフィックスでは、「三角メッシュ」は 3D 幾何学的オブジェクトの主な表現であり、ゲー...

モジュラー大型モデルが登場! IBMがWatsonXコアアーキテクチャの技術的詳細を公開

大規模言語モデル (LLM) は強力なパフォーマンスを備えていますが、既存のモデルのトレーニングと展...

...

...

...