ステップバイステップ | ニューラルネットワーク初心者ガイド

ステップバイステップ | ニューラルネットワーク初心者ガイド

[[252981]]

ビッグデータダイジェスト制作

編纂者:李磊、大潔瓊、雲周

過去数年間にブラウザを開いたことがあるなら、間違いなく「ニューラル ネットワーク」という言葉が何百回も使われているのを見たことがあるでしょう。

この短い記事では、この分野の最初の紹介とニューラル ネットワーク自体の背景情報を紹介します。次の 5 分間で、すぐに自分の分野の世界クラスの専門家になれるわけではないかもしれませんが、有意義な導入段階を乗り越える簡単な方法にはなります。さらに、夕食後の会話の話題になりそうな、よく使われる用語もいくつか学べます(特に、記事の最後にあるリストをさらに読んでいくと、さらに詳しく知ることができます)。

機械学習とは何ですか?

ニューラル ネットワークを理解するには、まず機械学習を理解する必要があります。機械学習を理解するには、まず人間の学習、つまり「古典的なプログラミング」について話す必要があります。

従来のプログラミングでは、開発者は解決しようとしている問題のあらゆる側面を理解し、解決策を見つける方法を正確に知る必要があります。

たとえば、プログラムに正方形と円の違いを認識させたいとします。この問題を解決する 1 つの方法は、コーナーを検出できるプログラムを作成することです。私のプログラムが 4 つの角を検出すると形状は正方形になり、角を検出しない場合は形状は円になります。

では、機械学習とは何でしょうか? 一般的に言えば、機械学習 = 例から学習することです。

機械学習では、上記の円と四角形を区別する問題に直面した場合、形状とそのカテゴリ(四角形または円)の多くの例を入力として取り込む学習システムを設計し、機械が形状を区別するために使用できる特徴を独自に学習することを期待します。

そして、機械がすべての特徴を学習したら、これまで見たことのない画像を与えて、正しく分類してくれることを期待します。

ニューロンとは何ですか?

ニューラル ネットワークの文脈では、ニューロンは派手な用語であり、「賢い」人々は関数という単純な名前を使いたがりません。もちろん、数学やコンピュータサイエンスの文脈では、関数は、入力を受け取り、処理ロジックを実装し、結果を出力するもののおしゃれな名前でもあります。

さらに重要なことは、ニューロンは学習単位として考えることができるということです。

したがって、機械学習の文脈における学習単位が何であるかを理解する必要があります。その後、ニューラル ネットワークの最も基本的な構造、つまりニューロンを理解できます。

この質問を説明するために、ブログ投稿の単語数と、実際にその投稿から読まれた単語数の関係を理解し​​ようとしているとしましょう。注意:これは機械学習の分野で行っているため、例から学習します。

そこで私は、ブログ投稿の単語数(x で表示)と、その投稿で実際に読まれた単語数(y で表示)のインスタンスを多数収集し、それらの間に何らかの関係(f で表示)があると仮定しました。

この方法の魔法は、どのような関係(直線など)が期待されるかをマシン(プログラム)に伝えるだけで、マシンが描画する必要のある実際の図形を理解するという点です。

それで、ここで何を得たのでしょうか?

次に x 語のブログ記事を書きたいときには、マシンは発見した関係 f を適用して、人々が実際に読むと予想される語数 y を教えてくれます。

つまり、ニューラル ネットワークとは...

ニューロンが関数であるなら、ニューラル ネットワークは関数のネットワークです。つまり、そのような関数と学習ユニットが多数あり、それらの入力と出力はすべて絡み合っており、つまり、それらは互いの入力と出力になっています。

このネットワークの設計者として、私は次の質問に答える必要があります。

  • 入力と出力をどのようにモデル化すればよいでしょうか? (たとえば、入力がテキストの場合、文字でモデル化できますか? 数値やベクトルはどうでしょうか? ...)
  • 各ニューロンにはどのような機能がありますか? (線形ですか? それとも指数関数的ですか? ...)
  • ネットワークのアーキテクチャは何ですか? (つまり、どの関数の出力がどの関数の入力になりますか?)
  • ネットワークを説明するためにどのような一般的な用語を使用できますか?

これらの質問に答えたら、ネットワークに正しい入力と出力のペアの例を多数「表示」して、これまで見たことのない新しい入力例を「表示」したときに、正しい出力がわかるようにすることができます。

これが何を意味するのかをより深く理解するために、非常にクールな Neural Network Playground にアクセスすることもできます。

ニューラルネットワークプレイグラウンド: https://playground.tensorflow.org/

ニューラル ネットワーク - 終わりのない物語

この分野は文字通り絶えず拡大しているため、毎分出現する新しいコンテンツの量を追跡することは誰にも不可能です。 (AI分野で人類の進歩を追跡できるAIを構築できる日は来るのだろうか)

この分野に参入するときに最初に知っておくべきことは、誰もすべてを知っているわけではないということです。だから、他人より劣っていることを心配する必要はなく、ただ好奇心を持ち続けてください。 :)

したがって、いくつかの優れたリソースをお勧めします。

Gal Yona は、この分野で非常に優れたブロガーの 1 人です。彼女の投稿は、ハードコアなテクニックの説明から半哲学的な解説まで多岐にわたります。

  • コアテクノロジーの説明: https://towardsdatascience.com/do-gans-really-model-the-true-data-distribution-or-are-they-just-cleverly-fooling-us-d08df69f25eb
  • データサイエンスに向けて:1001 個のブラック ボックスの物語

Siraj Raval は、理論的な説明から実践的なチュートリアルまで、非常に楽しい動画を多数投稿している YouTuber です。

  • 理論的説明: https://www.youtube.com/watch?v=xRJCOz3AfYY
  • 実践チュートリアル: https://www.youtube.com/watch?v=pY9EwZ02sXU

情熱的で洞察力に富んだ研究者である Christopher Olah は、基本的な概念からディープラーニングまで幅広い記事を掲載した素晴らしいブログを運営しています。

  • 基本的なコンセプトから: http://colah.github.io/posts/2015-09-Visual-Information/
  • ディープラーニング: https://distill.pub/2017/feature-visualization/

Towards Data Science は、この分野で最大の Medium 出版物です。数分でも数時間でも、余裕があれば、ホームページにアクセスして、実用的なツールから詳細なアルゴリズムまで、あらゆるものを調べ始めてください。

  • データサイエンスに向けて: https://towardsdatascience.com/

関連レポート:

https://medium.freecodecamp.org/neural-networks-for-dummies-a-quick-intro-to-this-fascinating-field-795b1705104a

[この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です]

この著者の他の記事を読むにはここをクリックしてください

<<:  AIは実は人々の思考や視野を制限している

>>:  2019 年に読むべき 5 つの無料機械学習電子書籍

ブログ    

推薦する

2021年にITリーダーがAIと機械学習に期待すること

毎年末と翌年の初めに、IT 思想リーダーが翌年のテクノロジー、革新的なサービス、業界の進歩などの開発...

2021年のAIの発展:エッジAIは止められない

[[388887]]人工知能研究を専門とする外国の機関が、人工知能の実務家を対象に、2021年の人工...

レビュー: 8 月に Github で注目すべき 7 つのデータ サイエンス プロジェクト

[[279134]]機械学習の旅で次の大きな一歩を踏み出す準備はできていますか? 実験的なデータセッ...

持続可能なワークスペースを実現する方法とその重要性

持続可能なワークスペースとは、環境への悪影響を最小限に抑え、廃棄物を削減するワークスペースです。もち...

「乾物」テイクアウト注文に8大AI配送・配分内部機構搭載、元気いっぱい!

過去2年間、テイクアウトの市場規模は驚異的なペースで成長を続けています。美団の最近のフードデリバリー...

ビッグデータの時代では、ソフトウェアエンジニアは徐々に減少し、アルゴリズムエンジニアが増加しています。

[[209263]]ビッグデータは人類の歴史のどの時代にも存在していましたが、テクノロジーが一定の...

...

ロボットの時代が来ます。私たちは全員失業してしまうのでしょうか?

[[415590]]ボストン・ダイナミクス社が開発したヒューマノイドロボット「アトラス」、ロボット...

27,303件のホットなコメントを調べた結果、なぜ「紅炎火水」は未だに世間から嘲笑されているのか?

AI開発者会議でスピーチをしている最中に、ロビン・リーは見知らぬ人から頭に水の入ったボトルをかけら...

トランスフォーマーベースの効率的で低遅延のストリーミング音声認識モデル

シナリオの観点から、音声認識はストリーミング音声認識と非ストリーミング音声認識に分けられます。非スト...

AIopsにおける人工知能

組織にとって、機械学習 (ML)、自動化、人工知能 (AI) 機能を備えたテクノロジー プラットフォ...

人工知能企業が利益を上げるのは難しいと言われていますが、具体的に何が難しいのでしょうか?

[[272155]] 2016年にAlphaGoが「人間対機械」の競争に勝利して以来、人工知能への...

独自の大規模言語モデルを展開する 5 つの方法

これは歴史上最も急速に成長している新技術です。生成 AI は世界を変え、画像、ビデオ、オーディオ、テ...

ビッグデータと人工知能 - 機械的思考から統計的思考へ

[[384196]]今日は、ビッグデータ、人工知能、認知問題の解決の関係ロジックについて話す記事を書...

2024 年にソフトウェア開発の生産性を向上させる 10 のベスト AI ツール

2023年までに、AIは複数の業界で広く採用されるようになります。 2024 年までに、ソフトウェア...