35歳で機械学習と人工知能の分野に参入?

35歳で機械学習と人工知能の分野に参入?

最近、友人とこの問題について話し合っています。ご存知のとおり、IT 業界は標準的な「若者の仕事」です。業界の発展はあまりにも速く、技術の発展に遅れないように既存の知識体系を絶えず更新する必要があります。新しい技術の出現により、長年にわたり技術で獲得してきた先行者利益が一瞬にして失われる可能性があるからです。たとえば、ディープラーニングの前と後のコンピュータービジョンの分野は、まったく異なる世界です。

[[276257]]

また、多くの企業が35歳のプログラマーを即解雇するという噂がネット上で広まっており、IT業界にとって35歳は厄介な年齢だと考えている人も多いのではないでしょうか。そのような悪徳企業があることは否定しません。本当に35歳のプログラマーが全員解雇されたら、新人を率いるのは誰でしょうか。解雇された人たちは集団で街頭に出て騒ぎを起こすでしょう。

しかし、新しいスキルの再蓄積については心配する必要があります。10,000時間のルールは誰もが知っています。次に、30歳以上のプログラマーであれば、夜更かしはできないと感じるでしょう。働けば働くほど、疲れを感じるようになります。夜通し起きていると、体が消耗するのを感じるでしょう。また、あなたと競争する死を恐れない若者もたくさんいます。その中には、985,211人の博士号や大学院生もいるかもしれません。どちらも経験がないので、企業は当然後者を好みます。

したがって、たとえ決意と勇気があったとしても、これまで学んだことをすべて覆してゼロから始めるのは賢明ではないと私は個人的に思います。さらに、すでに家庭を持ち、子供がいる場合もあるので、家族全体の将来についても考慮する必要があります。しかし、何年もかけて機械学習やディープラーニングの知識を学んだのに、それを活かす場がないのはもどかしくありませんか?人工知能の分野に転向する望みはないのでしょうか?そんなことはありません。優れたスキルを持っている限り、まだチャンスはあります。有能な人材を拒否する企業はないでしょう。能力は企業が能力を測る最初の基準です。

現在、人工知能の最先端の技術は一級都市に集中しています。この業界に本当に参加したいのであれば、現在の都市を離れて北京、上海、広州、深センに行く必要があるかもしれません。

エントリー方法は次の3つに分類できます。

  • フルスタックの人材になるために、小さな会社に就職しましょう。メリット:より多くの機会、より良いプラットフォーム、デメリット:不安定、昼食後に会社が解散を発表する可能性がある。
  • 大規模な工場でドライバーとして働くことには、安定性と専門家に囲まれているという利点があります。欠点は、コアテクノロジーにアクセスできるのは専門家だけであり、レンガを動かすことしかできないことです。
  • あなたが従事している伝統的な業界に力を与えます。利点: 以前のテクノロジーがアップグレードされています。欠点: 使用されているテクノロジーは比較的遅れており、孤独に耐える必要があります。

最後に、機械学習に「ただのランチはない」という定理を適用すると、自分が何を望んでいるのかを本当に知っている場合にのみ、最も正しい選択を行うことができます。

<<:  2019 年の機械学習に関するトップ 10 の Q&A: 面接で知っておくべきこと

>>:  人工知能は200年以上前の進化のパズルをどうやって解くことができるのでしょうか?

ブログ    
ブログ    

推薦する

科学者たちは古い携帯電話を分解してリサイクルするためのAI搭載ロボットを開発している

2016年、AppleはiPhoneを11秒で分解できるリサイクルロボット「Liam」を開発したと発...

...

...

...

...

人工知能の時代において、ロボットを超える子どもたちが身につけるべき能力とは何でしょうか?

[[428042]]今後予測できることは、人工知能の時代が徐々に深まり、私たちの生活がSF映画のリ...

...

ブロックチェーンは自動運転車の開発を促進できるか? BMW、GM、フォードはいずれも

来月、大手自動車メーカーのグループが米国でブロックチェーンベースの車両識別ネットワークの初のフィール...

クック氏は大量生産に資源を投入する気はなく、他の部門からも疑問視され、嘲笑されている。アップルの自動車製造への道は暗い。

アップル社内では、自動車製造部門が疑問視され、嘲笑された。 Appleの自動車製造は、業界関係者の間...

学者は大喜び!MetaがPDFと数式を変換できるOCRツールをリリース

私たちが通常、論文や科学文献を読むときに目にするファイル形式は、基本的に PDF (Portable...

量子コンピューティングは人工知能をどう変えるのか

量子コンピューティングと人工知能は、現代の最も破壊的なテクノロジーの 2 つです。 2 つのテクノロ...

...

...

Qualcomm CVPR 研究: ビデオ処理の計算を 78% 削減、畳み込み層に「ピクセルの選択」を教える

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

米国国土安全保障省はマスク着用者の顔認識技術をテストし、精度は96%だった。

1月6日、米国国土安全保障省(DHS)は、毎年開催される3回の生体認証技術カンファレンスでマスク着...