35歳で機械学習と人工知能の分野に参入?

35歳で機械学習と人工知能の分野に参入?

最近、友人とこの問題について話し合っています。ご存知のとおり、IT 業界は標準的な「若者の仕事」です。業界の発展はあまりにも速く、技術の発展に遅れないように既存の知識体系を絶えず更新する必要があります。新しい技術の出現により、長年にわたり技術で獲得してきた先行者利益が一瞬にして失われる可能性があるからです。たとえば、ディープラーニングの前と後のコンピュータービジョンの分野は、まったく異なる世界です。

[[276257]]

また、多くの企業が35歳のプログラマーを即解雇するという噂がネット上で広まっており、IT業界にとって35歳は厄介な年齢だと考えている人も多いのではないでしょうか。そのような悪徳企業があることは否定しません。本当に35歳のプログラマーが全員解雇されたら、新人を率いるのは誰でしょうか。解雇された人たちは集団で街頭に出て騒ぎを起こすでしょう。

しかし、新しいスキルの再蓄積については心配する必要があります。10,000時間のルールは誰もが知っています。次に、30歳以上のプログラマーであれば、夜更かしはできないと感じるでしょう。働けば働くほど、疲れを感じるようになります。夜通し起きていると、体が消耗するのを感じるでしょう。また、あなたと競争する死を恐れない若者もたくさんいます。その中には、985,211人の博士号や大学院生もいるかもしれません。どちらも経験がないので、企業は当然後者を好みます。

したがって、たとえ決意と勇気があったとしても、これまで学んだことをすべて覆してゼロから始めるのは賢明ではないと私は個人的に思います。さらに、すでに家庭を持ち、子供がいる場合もあるので、家族全体の将来についても考慮する必要があります。しかし、何年もかけて機械学習やディープラーニングの知識を学んだのに、それを活かす場がないのはもどかしくありませんか?人工知能の分野に転向する望みはないのでしょうか?そんなことはありません。優れたスキルを持っている限り、まだチャンスはあります。有能な人材を拒否する企業はないでしょう。能力は企業が能力を測る最初の基準です。

現在、人工知能の最先端の技術は一級都市に集中しています。この業界に本当に参加したいのであれば、現在の都市を離れて北京、上海、広州、深センに行く必要があるかもしれません。

エントリー方法は次の3つに分類できます。

  • フルスタックの人材になるために、小さな会社に就職しましょう。メリット:より多くの機会、より良いプラットフォーム、デメリット:不安定、昼食後に会社が解散を発表する可能性がある。
  • 大規模な工場でドライバーとして働くことには、安定性と専門家に囲まれているという利点があります。欠点は、コアテクノロジーにアクセスできるのは専門家だけであり、レンガを動かすことしかできないことです。
  • あなたが従事している伝統的な業界に力を与えます。利点: 以前のテクノロジーがアップグレードされています。欠点: 使用されているテクノロジーは比較的遅れており、孤独に耐える必要があります。

最後に、機械学習に「ただのランチはない」という定理を適用すると、自分が何を望んでいるのかを本当に知っている場合にのみ、最も正しい選択を行うことができます。

<<:  2019 年の機械学習に関するトップ 10 の Q&A: 面接で知っておくべきこと

>>:  人工知能は200年以上前の進化のパズルをどうやって解くことができるのでしょうか?

ブログ    
ブログ    

推薦する

プラットフォームの後は、モジュラーシャーシが主流になるのでしょうか?

自動車プラットフォームはどれほど重要ですか?この質問に答える必要はありません。市場で主流の自動車モデ...

アナリスト:Appleは早ければ来年末にも生成AIをiPhoneとiPadに統合する予定

10月22日、海通国際証券のアナリストであるPu Deyu氏が最近、Appleが早ければ2024年末...

データ、アルゴリズム、処理は人工知能にとって不可欠である

[[276859]]人工知能プロジェクトにおいて、最も重要なのはデータ、アルゴリズム、プロセスのうち...

Baiduの王海峰氏はオープンソースのディープラーニングプラットフォームPaddlePaddleを2019年のソフトウェアエキスポに導入した。

「ディープラーニングフレームワークは、インテリジェント時代のオペレーティングシステムです。百度のP...

責任ある AI 導入: IT 共生の青写真

AI ツールが合法化され、職場に導入されるようになると、人々は当然、その使用例や AI ツールに依存...

2021年から2030年までのドローン産業のトップ10の発展トレンド

民間ドローン産業は2010年頃から勢いを増し始め、特に2014年から2017年にかけて民生用ドローン...

世界を席巻しているトップ10のプログラミングアルゴリズムを鑑賞しましょう

[[121078]]アルゴリズムは今日の私たちの生活にとって非常に重要なので、いくら強調してもし過ぎ...

ディープラーニングの父が懸念:データ漏洩、AI兵器、批判の欠如

[[254553]]マーティン・フォードは2015年に出版した『ロボットの台頭』で大きな話題を呼びま...

清華大学の卒業生は大きな貢献をしました! Google、14のタスクで初の大規模一般医療モデルSOTAをリリース

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

ロボットはどのようにして経路を計画するのでしょうか?アニメーションを見てみましょう

機械の進路をたどって見てみましょう。 [[351870]]ロボット研究の分野では、特定のタスクが与え...

AIが継続的にモンスターと戦い、アップグレードできるようにするために、DeepMindは「メタバース」を作成した。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

ニューヨーク州が顔認識を「禁止」する法律を制定。なぜキャンパス内で AI が頻繁に「失敗」するのか?

アメリカは顔認識技術と全面的に戦っている。米ニューヨーク州は最近、2022年まで学校での顔認識やその...

エネルギー分野における人工知能の5つの主要な応用

[[435080]]エネルギー分野における AI の革新と進歩により、企業がエネルギーを生産、販売、...

AIのボトルネックの突破口は物理的な人工知能にある

人間の生活様式はここ数十年で大きく変化し、リモートおよび自動化されたプロセスの必要性が浮き彫りになり...