2019 年に注目すべき 11 の JavaScript 機械学習ライブラリ

2019 年に注目すべき 11 の JavaScript 機械学習ライブラリ

ほとんどの機械学習は Python などの言語で行われますが、フロントエンドとバックエンドの両方において、JavaScript エコシステムには素晴らしいコミュニティが存在します。この興味深い交差点から、私たちは JavaScript と機械学習を一緒に使用することの奇妙な可能性を探求し、実験するようになりました。ここでは、Javascript、機械学習、DNN、さらには NLP を組み合わせた興味深いライブラリをいくつか紹介します。

[[259694]]

1. ブレイン

Brain.js は、(現在は非推奨の)「brain」ライブラリに代わるニューラル ネットワーク用の JavaScript ライブラリであり、Node.js またはブラウザー (ノートブック コンピューティング) で使用でき、さまざまなタスクにさまざまなタイプのネットワークを提供します。

Githubアドレス: https://github.com/BrainJS/brain.js

これは、色のコントラストを認識するようにネットワークをトレーニングするためのデモです。

2. シナプス

Synaptic は、node.js およびブラウザ用の JavaScript ニューラル ネットワーク ライブラリであり、第 1 レベル、さらには第 2 レベルのニューラル ネットワーク アーキテクチャをトレーニングできます。このプロジェクトには、多層パーセプトロン、多層長短期記憶ネットワーク、リキッド ステート マシンなどの組み込みアーキテクチャと、実際のネットワークをトレーニングできるトレーナーが含まれています。

Githubアドレス: https://github.com/cazala/synaptic

3. ニータプティック

このライブラリは、Perceptron、LSTM、GRU、Nark などの多数の組み込みネットワークを備え、ブラウザーと Node.js に高速なニューロ進化とバックプロパゲーションを提供します。これは初心者向けの簡単なチュートリアルです。

Github アドレス: https://github.com/wagenaartje/neataptic

4. コンブネットJS

スタンフォード大学の博士によって開発されたこの人気ライブラリは、過去 4 年間メンテナンスされていませんが、間違いなくリストの中で最も興味深いプロジェクトの 1 つです。これは、汎用モジュール、分類、回帰、実験的強化学習モジュールをサポートし、画像処理用の畳み込みネットワークをトレーニングすることもできるニューラル ネットワークの JavaScript 実装です。

Githubアドレス: https://github.com/karpathy/convnetjs

現在サポートしているのは以下です:

  • 一般的なニューラル ネットワーク モジュール (完全接続層、非線形性)
  • 分類(SVM/Softmax)と回帰(L2)コスト関数
  • 画像処理用の畳み込みネットワークを指定してトレーニングする機能
  • Deep Q Learning に基づく実験的な強化学習モジュール

5.ウェブDNN

この日本製の JavaScript ライブラリは、ディープ ニューラル ネットワークの事前トレーニング済みモデルをブラウザー上で迅速に実行できるように構築されています。ブラウザ上で DNN を実行すると大量のコンピューティング リソースが消費されるため、フレームワークは DNN モデルを最適化してモデル データを圧縮し、WebAssembly や WebGPU などの JavaScript API を通じて実行を高速化します。

ニューラル ネットワーク スタイル転送に WebDNN を使用する例:

6. ディープラーニング

この人気のライブラリを使用すると、ブラウザでニューラル ネットワークをトレーニングしたり、事前トレーニング済みのモデルを推論モードで実行したりすることができ、Web の NumPy として使用できるとも主張されています。簡単にアクセスできる API により、ライブラリは実用的で便利なアプリケーションに使用でき、積極的にメンテナンスされています。

Githubアドレス: https://github.com/tensorflow/tfjs-core

TensorFlow.js エコシステムの一部として、現在は @tensorflow/tfjs-core (TensorFlow.js コア API) でホストされており、低レベルのハードウェア アクセラレーションによる線形代数演算と自動微分化のための熱心な API を提供しています。

7. Tensorflow ディーププレイグラウンド

Tensorflow Deep Playground は、d3.js と TypeScript で記述されたニューラル ネットワークのインタラクティブな視覚化です。このプロジェクトには基本的に非常に基本的な Tensor Flow プレイグラウンドが含まれていますが、さまざまな方法で使用したり、さまざまな目的で非常に印象的な教育機能として機能したりできます。

Githubアドレス: https://github.com/tensorflow/playground

8. 妥協

この非常に人気のあるライブラリは、「JavaScript での適度な自然言語処理」を提供します。非常に基本的でわかりやすく、小さなファイルにコンパイルすることもできます。何らかの理由で、その控えめな「十分な」アプローチにより、基本的な NLP を必要とするほぼすべてのアプリケーションに最適な候補になります。

Githubアドレス: https://github.com/spencermountain/compromise

9. ニューロ

この素晴らしいプロジェクトは、ブラウザ用のディープラーニングと強化学習の JavaScript ライブラリ フレームワークです。拡張された強化学習サポートを備えたフルスタックのニューラル ネットワーク ベースの機械学習フレームワークを実装するこのプロジェクトは、convnetjs の後継であると考える人もいます。

Githubアドレス: https://github.com/janhuenermann/neurojs

10.ml.js で

mljs 組織によって開発された、Javascript 用の機械学習ツールを提供するリポジトリのセット。これには、教師あり学習と教師なし学習、人工ニューラル ネットワーク、回帰アルゴリズム、統計、数学などのサポート ライブラリが含まれます。以下に簡単なウォークスルーを示します。

Githubアドレス: https://github.com/mljs

11. 心

Node.js とブラウザ用の柔軟なニューラル ネットワーク ライブラリで、基本的に予測を行う方法を学習し、マトリックス実装を使用してトレーニング データを処理し、構成可能なネットワーク トポロジを有効にします。また、すでに学習した「アイデア」をプラグ アンド プレイで使用でき、アプリケーションで非常に役立ちます。

Githubアドレス: https://github.com/stevenmiller888/mind

<<:  2019年の人工知能の給与水準、給与水準分析チャート、わかりやすい

>>:  これはナレッジグラフ技術の応用に関するわかりやすいガイドです

推薦する

スタンフォード大学は4年連続でAIレポートを発表しています。今年はどんな内容が取り上げられたのでしょうか?

2021年スタンフォードAIインデックスレポートが正式にリリースされ、過去1年間のAIの全体的な発...

企業セキュリティのための AI 生体認証

生体認証技術は、市場に登場した最新の AI イノベーションのおかげで、特に 2021 年には長年にわ...

リチウム電池の防爆結果がネイチャー誌の表紙に登場、UCLAの中国チームが制作

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

GPT-4 に匹敵するオープンソース モデルがリークされました。ミストラルのボスが確認: 正式版はさらに強力になる

ミストラル・ミディアムが誤って漏洩した?以前は API 経由でのみ利用可能でしたが、そのパフォーマン...

ChatGPT は IT ネットワーク エンジニアの代わりになるのでしょうか?

現代の IT ネットワークは、ファイアウォール、ルーター、スイッチ、サーバー、ワークステーション、そ...

MetaGPT AIモデルオープンソース:ソフトウェア会社の開発プロセスをシミュレートし、高品質のコードを生成できます

7月4日、コード生成に重点を置いたAIモデルとしてMetaGPTが発表された。名前は似ているが、Me...

2025年までに機械学習市場は967億ドルに達する

4月7日、PR Newswireによると、市場調査会社Grand View Researchが最近発...

第 1 回 51CTO 開発者コンペティションの作品がいくつか公開され、皆さんの参加を待っています。

/* 世界を変えるために生きるここでは、あらゆる作品が市場に参入するための種となる可能性があります...

...

CPUのみを使用して自律航行船を開発、実際に実現

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

ディープラーニングツール: TensorFlow と NLP モデル

[[200204]]序文自然言語処理 (略して NLP) は、コンピューターが人間の言語を処理する方...

...

GPT をゼロから構築するための 60 行のコード!最も完全な実践ガイドはここにあります

GPT をゼロから構築するには 60 行のコードが必要ですか?最近、開発者が Numpy コードを使...