FriendFeed は最近検索機能を開始しましたが、Facebook もすぐに追随すると思います。 ソーシャル ネットワークの「アクティビティ ストリーム」のリアルタイム検索は現在話題になっており、Google や Microsoft を含むすべてのインターネット企業は、信頼できる人物をフィルターとして利用することの価値を認識しています。かつてはソーシャル検索として知られていたリアルタイム検索が勢いを増しています。まずアクティビティ ストリームで使用され、その後ネットワーク全体で使用されます。 ソーシャル関連性ランクアルゴリズムが誕生しようとしています。そのとき、「アクティビティ ストリーム」を検索すると、結果は時系列順に並べられるのではなく、各情報とユーザーの「ソーシャル グラフ」との関連性に応じて並べられるようになります。つまり、より親密な関係にある人が最初にランク付けされます。このモデルはどのように機能しますか?実際には、Google のページランクと同様に、アルゴリズムを経る必要があります。 友人に基づいて フォローしている人を検索結果の上位に表示するのは当然のアイデアだが、Twitter はまだそれを採用していない。これで、Twitter で「Wilco」を検索すると、結果が時系列で並び替えられるようになります。この方法は、検索結果の情報のほとんどが他人から得られるものであるため、実際には「関連性」をあまり反映しません。ただし、表示される情報がフォローしているユーザーからのものであれば、検索結果はより役立ちます。 Twitter は現在このモデルをサポートしていませんが、FriendFeed はこれをうまく採用しています。 FriendFeed は、ユーザーのソーシャル グラフに基づいて検索結果をフィルターします。 FriendFeed の場合、これは難しいことではありません。一方で、ユーザーがフォローしているユーザーを理解し、他方では、ハイエンドのフィード検索テクノロジーをユーザーのソーシャル グラフに統合します。 このアプローチは素晴らしいように思えますが、問題があります。 「Wilco」を検索すると、このバンドが新しいアルバムをリリースしたばかりなので良い結果が得られましたが、他の多くのキーワードでは結果が返されませんでした。理由は単純で、Facebook の友達や Twitter でフォローしている人が、あなたが興味を持っているすべてのトピックについてコメントできるわけではないからです。問題は、データがまばらであること、つまり信頼できる意見が不足していることです。 その他のデータソースを探す 明らかに、データの希薄性の問題を解決するには、より多くのデータが必要です。解決策の 1 つは、ソーシャル グラフの拡張など、他の信頼できるリソースを統合することです。たとえば、検索結果には必ずしもあなたが直接フォローしているユーザーのコンテンツが含まれるわけではなく、あなたがフォローしているユーザーがフォローしている他のユーザーのコンテンツも含まれる場合があります。 Facebook では、これを「友達の友達」と呼びます。これらの人々の意見をよく知らないので信頼できないと思うかもしれませんが、「6次の隔たり理論」によれば、人々の社会的つながりは狭いため、このタイプのコンテンツには多くの場合同じ価値があることになります。 もう 1 つの社会的関連性ソート アルゴリズムは、同様の興味を持つ人々を統合することであり、これはいわゆる「趣味の隣人」です。このアプローチは、Last.fm、Flixster、Goodreads などの垂直型ソーシャル ネットワークで非常に一般的です。これらのネットワークは、友達以外にあなたと似ている人が誰であるかを理解するのに役立ちます。ただし、この操作は計算コストが高く、非常に時間がかかります。 Twitter が同様の機能を実現したい場合、ユーザーが投稿するリンクや Twitter メッセージのセマンティクスに基づいて決定を下す必要があります。これは非常に難しい問題ですが、時間が経てば解決できるはずです。 グループ要因 ソーシャル グラフの「2 次」と「関心近隣」の使用に加えて、ソーシャル関連性のソートでは、影響力のある人物に高い重みを与えることもできます。他の指標がない場合、数十万人のフォロワーを持つ人の方が、見知らぬ人よりも関連性が高い可能性が高くなります。フォロワー数を使用することは、残りの「アクティビティフロー」を測定するのに適した方法です。 つまり、見知らぬ人からの無数のメッセージを機械的に統合するのは良い考えではありません。人々が Google 検索の最初のページより先を見ることはほとんどないのと同じように、Twitter フィードの時系列順もすぐに退屈なものになるでしょう。ソーシャル関連性によるソートでは、グループの共通の感情が考慮され、結果が重複しないフィルタリング基準が提供されます。 ***アルゴリズム 完璧なソーシャル関連性ランキングアルゴリズムは存在せず、ページランクも完璧とは言えませんが、それでも有用であると考えています。インターネットにおけるページランクと同様に、ソーシャル関連性ランキングは、時間の経過とともに、ソーシャル ネットワーク上の絶え間なく続くアクティビティの流れを理解するのに役立ちます。このランキングは、私たちが友人を理解する方法に大きな影響を与えるでしょう。 やがて、ソーシャル関連性ランキングは一般的なウェブ検索も変えるでしょう。現在、一般的な Web 検索の結果は関連性と鮮度によって自動的に並べ替えられており、ソーシャル関連性ランキングが考慮されると、検索結果はソーシャル要因に基づいて再ランク付けされるようになります。 【編集者のおすすめ】
|
[[431318]] 10月21日の夜、ついにPyTorch 1.10がリリースされました!このアッ...
機械学習とディープラーニングの違いは何だろうとよく疑問に思う方は、この記事を読んで、その違いを一般の...
この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...
RL アルゴリズムでは通常、観測値の取得、アクションの計算、およびそれらの実行の間で環境の状態が変化...
AI にカーボン フットプリントがあることは驚くことではありません。カーボン フットプリントとは、...
チャットボットは、実生活で人工知能を活用するための最も人気があり、広く採用され、敷居の低い方法の 1...
言語モデル (LM) は、不快な言葉を生成する可能性がしばしばあり、モデルの展開にも影響を及ぼします...
人工知能技術の発展に伴い、携帯電話の翻訳ソフトを使って自分の言語をリアルタイムで翻訳したり、画像認識...
発見とは何でしょうか? 数学には古くからある疑問があります。新しい数学的手法が発見された、あるいは発...
小売体験は長年にわたってあまり変わっていません。つまり、店に入って、適切な製品を見つけて、それを購入...
[51CTO.com クイック翻訳]人工知能技術の開発初期から、科学者たちは外の世界を「見る」ことが...