独自のデータを使ってシンプルな畳み込みニューラルネットワークを構築する

独自のデータを使ってシンプルな畳み込みニューラルネットワークを構築する

この記事では、花、車、猫、馬、人、自転車、犬の 7 種類の何千もの画像でトレーニングされ、特定の画像が猫、犬、または人のいずれであるかを予測できる畳み込みニューラル ネットワークを構築します。

 

このCNN実装では、以下のトピックをカバーする独自の画像データセットを使用します。

  • 独自のデータセットの読み込みと前処理
  • Keras での CNN モデルの設計とトレーニング
  • 損失と精度の曲線のプロット
  • モデルを評価し、テスト画像の出力クラスを予測する
  • CNNの中間層出力の可視化
  • 結果の混同行列をプロットする

独自のデータセットを読み込んで前処理します。

使用するデータセットは、インターネットから収集されラベル付けされた 7 つのクラスで構成されています。 Python コードは次のとおりです。

  1. PATH = os.getcwd()  
  2. #データパスを定義する 
  3. data_path = PATH + '/data'    
  4. data_dir_list = os.listdir(データパス)  
  5. データディレクトリリスト

出力:

  1. [ '自転車' '車' '猫' '犬' '花' '馬' '人間' ]

いくつかの画像を視覚化すると、画像が 128 x 128 ピクセルであることがわかります。Python コードは次のとおりです。

  1. #いくつかの画像を視覚化する 
  2. 画像 = X_train[1441,:].reshape((128,128))  
  3. plt.imshow(画像)  
  4. plt.show()

独自のデータを使ってシンプルな畳み込みニューラルネットワークを構築する 

次に、Keras で CNN モデルの設計とコンパイルを開始します。Python 実装は次のとおりです。

  1. #入力シェイプの初期化 
  2. input_shape = img_data[0].shape  
  3. #CNNシーケンシャルモデルの設計 
  4. モデル = シーケンシャル ([  
  5. 畳み込み2D(32,3,3, border_mode = 'same' 、 activation = 'relu' 、 input_shape = input_shape)、  
  6. 畳み込み2D(32,3,3, アクティベーション = 'relu' )、  
  7. MaxPooling2D(プールサイズ = (2,2))、  
  8. ドロップアウト(0.5)、  
  9. 畳み込み2D(64,3,3, アクティベーション = 'relu' )、  
  10. MaxPooling2D(プールサイズ = (2,2))、  
  11. ドロップアウト(0.5)、  
  12. フラット化()、  
  13. 密度(64, 活性化 = 'relu' ),  
  14. ドロップアウト(0.5)、  
  15. 密度(num_classes、アクティベーション = 'softmax' )  
  16. ])  
  17. #モデルのコンパイル 
  18. モデル.コンパイル(  
  19. 損失 = 'カテゴリクロスエントロピー'  
  20. オプティマイザー = 'adadelta'  
  21. メトリック = [ '精度' ])

モデルを適合させた後、反復を通してトレーニングと検証を視覚化できます。

  1. ist = model.fit(X_train, y_train,  
  2. バッチサイズ = 16、  
  3. nb_epoch = num_epoch、  
  4. 詳細=1、  
  5. 検証データ = (X_テスト、y_テスト)  



次のコードを使用して、モデルを使用して新しい画像の新しいクラスを予測できるようになりました。

  1. # テスト画像の予測 
  2. 印刷((モデル.予測(テストイメージ)))  
  3. print( '画像クラス:' , model.predict_classes(test_image))

以下に示すように、モデルは画像をクラス[0](自転車)に正しく分類しました。


  1. [[3.6560327e-01 2.7960737e-06 1.2630007e-03 2.9311934e-01 1.6894026e-02  
  2. 3.0998811e-01 1.3129448e-02]]  
  3. 画像クラス: [0]

これは正規化されていない混同行列である

これで、モデルと重みを保存して、実際のアプリケーションに実装できるようになりました。

<<:  機械学習: 密度ベースの外れ値検出アルゴリズム

>>:  200 の優れた機械学習チュートリアルの要約「史上最も完全」

ブログ    
ブログ    
ブログ    

推薦する

建設における AI: 人工知能はスマート建設への道をどのように切り開くのか?

確かに、人工知能はさまざまな面で人々の生活を楽にしてきました。 Google アシスタント、Siri...

2021 年に人工知能が最も大きく発展する分野はどれでしょうか?

2021年のAIアプリケーションのハイライト[[438943]] 2021年は世界全体にとって非常...

同義千文の720億パラメータモデルがオープンソース化、初の「フルサイズ・フルモード」オープンソース化を実現

12月1日、アリババクラウド同義千文の720億パラメータモデルQwen-72Bがオープンソース化され...

2021年中国人工知能産業の現在の市場状況と有利な軌道の分析コンピュータビジョン軌道

——原題:2021年中国人工知能産業の市場現状と有利な軌道の分析。コンピュータビジョンは1000億...

YOLOプロジェクト復活!マスターが後を継ぎ、YOLOの父が2か月間引退し、v4バージョンが正式にリリースされました

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

能力が高くても給料が高くならない?これらの考えはあなたに合うでしょう

2019年ももうすぐ終わり。何もなかったこの一年を振り返って、最も給与が高い職種はどれでしょうか?ア...

AI を医療業界のあらゆる側面に深く統合するにはどうすればよいでしょうか?

[[319366]]将来的には、医療エコシステムを中心として、人工知能が医療システムのあらゆる側面...

それは単なるアルゴリズムとモデルですか?これらのポイントによりAIを徹底的に理解できる

現在、AIはデジタル変革においてより重要な役割を果たしています。デジタル変革プロセス全体は、「クラウ...

...

オープンソース: ディープラーニングモデルと姿勢推定コードのオープンソースコードの推奨、人工知能チュートリアル

オープンソース: ディープラーニング モデルとポーズ推定コードのオープンソース コードの推奨、人工知...

百度の女性デーのポスターはスマートライフの姿を描いている:人工知能は女性をより自由にする

社会の進歩と国民の意識の高まりに伴い、社会全体が女性の権利にますます注目するようになっています。 3...

...

Google は交通信号に AI を導入して汚染を削減

タイミングの悪い信号は貴重な時間を無駄にするだけではありません。 Google の最高サステナビリテ...