独自のデータを使ってシンプルな畳み込みニューラルネットワークを構築する

独自のデータを使ってシンプルな畳み込みニューラルネットワークを構築する

この記事では、花、車、猫、馬、人、自転車、犬の 7 種類の何千もの画像でトレーニングされ、特定の画像が猫、犬、または人のいずれであるかを予測できる畳み込みニューラル ネットワークを構築します。

 

このCNN実装では、以下のトピックをカバーする独自の画像データセットを使用します。

  • 独自のデータセットの読み込みと前処理
  • Keras での CNN モデルの設計とトレーニング
  • 損失と精度の曲線のプロット
  • モデルを評価し、テスト画像の出力クラスを予測する
  • CNNの中間層出力の可視化
  • 結果の混同行列をプロットする

独自のデータセットを読み込んで前処理します。

使用するデータセットは、インターネットから収集されラベル付けされた 7 つのクラスで構成されています。 Python コードは次のとおりです。

  1. PATH = os.getcwd()  
  2. #データパスを定義する 
  3. data_path = PATH + '/data'    
  4. data_dir_list = os.listdir(データパス)  
  5. データディレクトリリスト

出力:

  1. [ '自転車' '車' '猫' '犬' '花' '馬' '人間' ]

いくつかの画像を視覚化すると、画像が 128 x 128 ピクセルであることがわかります。Python コードは次のとおりです。

  1. #いくつかの画像を視覚化する 
  2. 画像 = X_train[1441,:].reshape((128,128))  
  3. plt.imshow(画像)  
  4. plt.show()

独自のデータを使ってシンプルな畳み込みニューラルネットワークを構築する 

次に、Keras で CNN モデルの設計とコンパイルを開始します。Python 実装は次のとおりです。

  1. #入力シェイプの初期化 
  2. input_shape = img_data[0].shape  
  3. #CNNシーケンシャルモデルの設計 
  4. モデル = シーケンシャル ([  
  5. 畳み込み2D(32,3,3, border_mode = 'same' 、 activation = 'relu' 、 input_shape = input_shape)、  
  6. 畳み込み2D(32,3,3, アクティベーション = 'relu' )、  
  7. MaxPooling2D(プールサイズ = (2,2))、  
  8. ドロップアウト(0.5)、  
  9. 畳み込み2D(64,3,3, アクティベーション = 'relu' )、  
  10. MaxPooling2D(プールサイズ = (2,2))、  
  11. ドロップアウト(0.5)、  
  12. フラット化()、  
  13. 密度(64, 活性化 = 'relu' ),  
  14. ドロップアウト(0.5)、  
  15. 密度(num_classes、アクティベーション = 'softmax' )  
  16. ])  
  17. #モデルのコンパイル 
  18. モデル.コンパイル(  
  19. 損失 = 'カテゴリクロスエントロピー'  
  20. オプティマイザー = 'adadelta'  
  21. メトリック = [ '精度' ])

モデルを適合させた後、反復を通してトレーニングと検証を視覚化できます。

  1. ist = model.fit(X_train, y_train,  
  2. バッチサイズ = 16、  
  3. nb_epoch = num_epoch、  
  4. 詳細=1、  
  5. 検証データ = (X_テスト、y_テスト)  



次のコードを使用して、モデルを使用して新しい画像の新しいクラスを予測できるようになりました。

  1. # テスト画像の予測 
  2. 印刷((モデル.予測(テストイメージ)))  
  3. print( '画像クラス:' , model.predict_classes(test_image))

以下に示すように、モデルは画像をクラス[0](自転車)に正しく分類しました。


  1. [[3.6560327e-01 2.7960737e-06 1.2630007e-03 2.9311934e-01 1.6894026e-02  
  2. 3.0998811e-01 1.3129448e-02]]  
  3. 画像クラス: [0]

これは正規化されていない混同行列である

これで、モデルと重みを保存して、実際のアプリケーションに実装できるようになりました。

<<:  機械学習: 密度ベースの外れ値検出アルゴリズム

>>:  200 の優れた機械学習チュートリアルの要約「史上最も完全」

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

大型モデルは集団的に制御不能です!南洋理工大学の新たな攻撃は主流のAIすべてに影響を与える

業界最先端の大型モデルが一斉に「脱獄」! GPT-4 だけでなく、通常はそれほど間違いを起こさない ...

大規模なモデルを効率的に展開するにはどうすればよいでしょうか? CMU の最新の LLM 推論と MLSys 最適化テクノロジーに関する 10,000 語のレビュー

人工知能(AI)の急速な発展を背景に、大規模言語モデル(LLM)は、言語関連のタスクにおける優れたパ...

2021 年の Python 機械学習ライブラリ トップ 10

Python は機械学習にとって最も鋭い武器であると言えます。また、機械学習は Python の影...

北京大学の新しい研究では、数学モデルを使用して、インターネット有名人の台頭の秘密を明らかにしています。ネイチャー誌に掲載

ソーシャル ネットワークは私たちの生活にますます大きな影響を与えており、情報の普及、新しいテクノロジ...

AIと機械学習がDevOpsをどう変えるのか

人工知能と機械学習が DevOps に新たな自動化機能をもたらすにつれて、これらのテクノロジーが組織...

機械学習研究の10年

[[271167]] 10年前のMSRAの夏、私が初めて機械学習の研究に挑戦したとき、科学研究におけ...

AIGCは単なるコード支援ではありません

生成型人工知能 (AIGC) は、ソフトウェア開発者の生産性を向上させる大きな可能性を秘めています。...

米メディア:なぜソフトロボットは科学者を魅了するのか?

[[374766]]米フォーチュン誌のウェブサイトは1月1日、「なぜ『ソフトロボット』はNASAや...

人々が家に座っていて、車が道路を走っています。自動運転は信頼できるのでしょうか?

これまで、無人運転車は基本的にテレビや映画でしか耳にしませんでした。現在、無人運転車の技術は長い間実...

...

不正行為防止スパムテキスト認識のためのZhihuのディープラーニング実践の詳細な説明

背景今年8月時点で、知乎の登録ユーザー数は2億人を突破した。私たちはスパムの管理において、より大きな...

2022QSリスト公開! MITがコンピュータサイエンスランキングでトップ、清華大学は15位、北京大学はトップ20から脱落

2022年QS世界大学分野別ランキングが発表されました!全体的には、21年前と比べて大きな変化はあり...

...