写真を3Dに変換する品質が急上昇! GitHub がショートポジションをオープンしたところ、300 人以上がスターを付けました

写真を3Dに変換する品質が急上昇! GitHub がショートポジションをオープンしたところ、300 人以上がスターを付けました

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

最新の「1枚の画像だけで3D化する」方法は人気があり、忠実度も高いです。

これまでの方法と比較すると、これは飛躍的な進歩です。 (新しい方法は最後の行にあります)

結果の 1 つを拡大すると、ジオメトリの詳細が豊富で、レンダリング解像度が1024 x 1024と高いことがわかります。

新しい方法「Magic123」は、KAUSTの博士課程学生Qian Guocheng氏が率いるKAUST、Snap、オックスフォードの共同チームによって考案されました。

画像を 1 枚入力するだけで、高品質の 3D メッシュだけでなく、視覚的に魅力的なテクスチャも 1 つのパッケージで得られます。

論文が arXiv に投稿されたばかりで、コードがまだアップロードされていなかったにもかかわらず、300 人以上の人がスターを付けて (そして更新を促して) くれました。

粗いものから細かいものまで、2段階のアプローチ

かつて、2D を 3D に変換する最も一般的な方法は NeRF でした。しかし、NeRF は大量のビデオメモリを消費するだけでなく、解像度も低くなります。

この論文では、よりリソース効率の高い Instant-NGP ソリューションであっても、16G メモリの GPU では128x128の解像度しか達成できないと指摘しています。

3D コンテンツの品質をさらに向上させるために、チームは NeRF の後に第 2 段階を導入し、DMTet アルゴリズムを使用して解像度を1024x1024に上げ、NeRF から派生したジオメトリとテクスチャを改良しました。

2D 参照画像が 1 枚だけの場合、まず既製の Dense Prediction Transformer モデルを使用してセグメンテーションを行い、次に事前トレーニング済みの MiDaS を使用して深度マップを抽出し、その後の最適化を行います。

次に、Instant-NGP を使用して最初の大まかな段階に入り、複雑な形状をすばやく推測して再構築できるように最適化しますが、解像度が高くなりすぎず、十分な解像度で十分です。

2 番目の改良フェーズでは、メモリ効率の高い DMTet メソッドを使用して 3D モデルが改良され、分離されます。 DMTet は、SDF ボクセルとメッシュ グリッドのハイブリッド表現であり、微分可能な四面体メッシュを生成します。

テクスチャ反転は両方の段階で使用され、生成されたジオメトリとテクスチャが入力と一致するようにします。

研究チームは入力画像を、一般的な物体(テディベアなど)、あまり一般的でない物体(2 つの積み重ねられたドーナツなど)、珍しい物体(ドラゴンの像など)の 3 つのカテゴリに分類しました。

2D 事前情報のみを使用すると、より複雑な 3D 構造を生成できることがわかりましたが、入力画像との一貫性は高くありません。

3D の事前情報のみを使用すると、正確ではあるものの詳細度の低いジオメトリが生成されます。

チームは2D 事前分布と 3D 事前分布を組み合わせて使用​​することを提案し、何度も試行した結果、最終的に 2 つの事前分布のバランスを見つけました。

2D事前情報にはStable Diffusion 1.5を使用し、3D事前情報にはコロンビア大学/トヨタ研究所が提案したZero-1-to-3を使用します。

定性的な比較では、2 種類の事前情報を組み合わせた Magic123 メソッドが最良の結果を達成しました。

定量的な比較では、NeRF4 および RealFusion15 データセットにおける Magic123 のパフォーマンスが評価され、以前の SOTA 方法と比較してすべての指標でトップ 1 の結果を達成しました

では、Magic123 メソッドには何か制限があるのでしょうか?

はい、あります。

論文の最後で、研究チームは、この方法全体が参照画像が正面図であるという仮定に基づいており、他の角度からの画像を入力すると、生成される幾何学的特性が不十分になると指摘した。

たとえば、テーブルの上の食べ物を上から撮影する場合、この方法は適していません。

また、SDS ロスの使用により、 Magic123 は飽和したテクスチャを生成する傾向があります。特に細かいレベルでは、解像度が高くなるほどこの問題は拡大します。

プロジェクトホームページ: https://guochengqian.github.io/project/magic123/

論文: https://arxiv.org/abs/2303.11328

GitHub: https://github.com/guochengqian/Magic123

<<:  HKU Alibabaの「Visual AI Anywhere Door」は、ワンクリックでオブジェクトをあらゆるシーンにシームレスに転送できる

>>:  アメリカ合衆国憲法と聖書はどちらも AI によって生成されたのでしょうか? AI検出器は信頼性が低く、人間のデータが限られているためAI開発は制限される

ブログ    
ブログ    

推薦する

2021年の中国サービスロボット産業の発展状況のレビュー

人口の高齢化が加速し、教育に対する需要が引き続き強いことから、中国のサービスロボットは大きな市場潜在...

小売業界のトレンド: 人工知能からクーポンコードまで

テクノロジーによりシステム効率が大幅に向上し、ビジネス運営のコスト効率と時間効率が向上しました。テク...

MITジェネシス核融合が世界記録を更新!高温超伝導磁石が恒星のエネルギーを解放、人工太陽が誕生するのか?

クリーンエネルギーの聖杯は征服されたのか? 「MITチームは、一夜にして核融合炉のワット当たりコスト...

強化学習の父がAGIスタートアップ業界に参入!伝説のプログラマー、カーマックと力を合わせ、彼らは大規模なモデルに頼らないことを誓った

伝説のプログラマー、ジョン・カーマックと強化学習の父、リチャード・サットンが力を合わせ、 All i...

...

...

...

なぜ人工知能は未だに愚かなものなのでしょうか?人間のせいにする

[[186749]]かつてはSF作家や脚本家の領域だった人工知能が、今や着実に現実世界に進出しつつあ...

...

AIは急速に変化しています。コンピュータービジョンの未来はどこにあるのでしょうか?

著者: 張傑[51CTO.com からのオリジナル記事]コンピューター ビジョン (CV) は、人工...

AI時代に向けてキャリアを再設計する時が来た

Pew Researchの分析によると、AI、特にAIGCの台頭は管理職や専門職に大きな影響を与える...

信じられない!中国はわずか3年で人工知能の分野で大きな成果を上げた

計算知能から知覚知能、そして認知知能へと、人工知能の鍋はついに沸騰しようとしています。最近、3E 2...

EasyDLが新しくアップグレードされ、ERNIEの3つの機能によりエンタープライズレベルのNLPモデルを迅速にカスタマイズできるようになりました。

最近、百度文心は3つの主要機能をリリースし、カスタマイズされたマルチラベルテキスト分類、感情傾向分析...

AIストレージアーキテクチャの構築方法

今日、データの処理と保存に関する懸念が高まっています。生成されるデータの量、データが作成される場所、...