最新のAIオープンソースプロジェクト12件をダウンロードする必要があります

最新のAIオープンソースプロジェクト12件をダウンロードする必要があります

[[242968]]

#TensorFlow に基づく強化学習フレームワーク

Dopamine は、強化学習アルゴリズムのプロトタイプを迅速に作成するための研究フレームワークです。TensorFlow をベースとし、小さくて簡単にアクセスできるコード ベースを求めるユーザーのニーズを満たす、シンプルで使いやすい実験環境を研究者に提供することを目的としています。ユーザーは、研究プロセス中にアイデアを検証するための実験を簡単に構築できます。

プロジェクトリンク

https://github.com/google/dopamine

トランスモグリフAI

#構造化データ用のエンドツーエンドの AutoML ライブラリ

TransmogrifAI は、Salesforce によってオープンソース化された、Scala で記述され、Spark 上で実行される AutoML ライブラリです。このプロジェクトは、自動機械学習テクノロジーを通じて開発者が製品化プロセスを加速できるようにすることを目指しています。わずか数行のコードで、データのクリーニング、機能エンジニアリング、モデルの選択を自動的に完了し、さらに探索と反復を行うために高性能モデルをトレーニングできます。

AutoML について: ニューラル ネットワーク アーキテクチャ検索 (NAS) の概要 | AutoML 資料の推奨事項を添付

プロジェクトリンク

https://github.com/salesforce/TransmogrifAI

オープンNRE

#ニューラルネットワーク関係抽出ツールキット

OpenNRE は、清華大学コンピューターサイエンス学部の Zhiyuan Liu 教授によってオープンソース化された、TensorFlow に基づくニューラル ネットワーク関係抽出ツールキットです。 このプロジェクトでは、関係性の抽出を埋め込み、エンコーダー、セレクター、分類器の 4 つのステップに分割します。

プロジェクトリンク

https://github.com/thunlp/OpenNRE

TensorFlow モデル分析

#TensorFlow モデル分析オープンソースライブラリ

TFMA は、TensorFlow ユーザーがトレーニング済みのモデルを分析するのに役立つ、Google のオープンソース ライブラリです。 ユーザーは、Trainer で定義されたメトリックを使用して、分散方式で大量のデータに対してモデルを評価できます。これらのメトリックはさまざまなデータに対して計算でき、その結果は Jupyter Notebook で視覚化できます。

プロジェクトリンク

モデル分析

#一般的なディープラーニングモデル展開フレームワーク

GraphPipe は、Oracle がオープンソース化した一般的なディープラーニング モデル展開フレームワークです。これは、ユーザーが機械学習モデルの展開を簡素化し、特定のフレームワークのモデル実装から解放できるように設計されたプロトコルとソフトウェアのコレクションです。 GraphPine は、ディープラーニング フレームワーク全体のモデル用のユニバーサル API、すぐに使用できるデプロイメント ソリューション、強力なパフォーマンスを提供します。現在、TensorFlow、PyTorch、MXNet、CNTK、Caffe2 などのフレームワークをサポートしています。

プロジェクトリンク

参考:

ONNX モデル動物園

#一般的なディープラーニング事前トレーニングモデルコレクション

このプロジェクトは、最も人気のあるディープラーニングの事前トレーニング済みモデルをまとめたものです。モデルはすべて、Facebook と Microsoft が立ち上げた ONNX (OpenNeural NetworkExchange) 形式であり、異なるフレームワーク間でモデルを移行できます。各モデルには対応する Jupyter Notebook があり、モデルのトレーニング、実行中の推論、データセット、参照などの情報が含まれています。

プロジェクトリンク

https://github.com/onnx/models

ディープラーニングに基づく106ポイントの顔キャリブレーションアルゴリズム

#良心的なオープンソースの顔キャリブレーションアルゴリズム

顔の美化、メイクアップ、協調的な生体検出、顔のキャリブレーションの前処理手順を含む、良心的なオープンソースの顔キャリブレーション アルゴリズム。このプロジェクトの Windows プロジェクトは、従来の SDM アルゴリズムに基づいています。オープンソース コードを変更することで、テスト コードを合理化して保持し、コード構造を最適化します。 Android コードはディープラーニングに基づいています。堅牢で多面的な追跡をサポートする効率的なネットワーク モデルを設計しました。 現在、ディープラーニングアルゴリズムは顔のキャリブレーションにおいて優れた結果を達成しています。このプロジェクトは、比較的シンプルで使いやすい実装方法を提供することを目指しています。

[[242989]]

<<:  AIの次の大きな課題:言語のニュアンスを理解すること

>>:  APP がアルゴリズムにこだわっているとき、パーソナライズされたカスタマイズを通じて「自分自身」を理解できるでしょうか?

ブログ    

推薦する

AIアルゴリズムの包囲とフードデリバリー業者の「ブレイクアウト」

システムに閉じ込められた配達員たちは反撃している。最近、海外のテクノロジーメディアWiredは、プラ...

携帯電話の顔認識は本当に安全ですか?

​​​ [51CTO.com クイック翻訳]顔認識は、セキュリティメカニズムとして、ますます多くの携...

英国はAI大規模モデルの分野で利用するためのスーパーコンピュータの開発に2億2500万ポンドを投資する予定

英国政府は11月2日、国の人工知能能力をさらに強化するため、人工知能研究資源への投資を2023年3月...

社内抗争、顧客獲得競争…マイクロソフトとOpenAIの協力の裏側を海外メディアが暴露

Microsoft と OpenAI の提携は、現在テクノロジー界で最も注目されているものの 1 つ...

自動運転車はどれくらい遠いのでしょうか?

現在、5Gや人工知能産業が活況を呈しており、さまざまな大手企業が利益を最大化するために「応用シナリオ...

2019年自動車向け人工知能コンピューティング技術と市場動向

[[258319]]人工知能 (AI) は、私たちの毎日の通勤を含め、ゆっくりと、しかし確実に、より...

...

...

ビッグデータの機械理解の秘密:クラスタリングアルゴリズムの詳細な説明

この記事では、いくつかのクラスタリング アルゴリズムの基本的な概要を示し、シンプルでありながら詳細な...

...

金融技術分野における人工知能と機械学習の応用と開発

[[383269]] [51CTO.com クイック翻訳] 過去数年間、金融業界では、業界の絶え間な...

マイクロソフトリサーチアジア、ウェイ・フル氏:人工知能における基礎イノベーションの第2次成長曲線

人工知能の発展の観点から見ると、GPT シリーズのモデル (ChatGPT や GPT-4 など) ...

ByteDance、最大6.9倍のパフォーマンス向上を実現した大規模モデルトレーニングフレームワークveGiantModelをオープンソース化

背景近年、NLPの応用分野では大きな進歩がありました。Bert、GPT、GPT-3などの超大規模モデ...