#TensorFlow に基づく強化学習フレームワーク Dopamine は、強化学習アルゴリズムのプロトタイプを迅速に作成するための研究フレームワークです。TensorFlow をベースとし、小さくて簡単にアクセスできるコード ベースを求めるユーザーのニーズを満たす、シンプルで使いやすい実験環境を研究者に提供することを目的としています。ユーザーは、研究プロセス中にアイデアを検証するための実験を簡単に構築できます。 プロジェクトリンク https://github.com/google/dopamine トランスモグリフAI#構造化データ用のエンドツーエンドの AutoML ライブラリ TransmogrifAI は、Salesforce によってオープンソース化された、Scala で記述され、Spark 上で実行される AutoML ライブラリです。このプロジェクトは、自動機械学習テクノロジーを通じて開発者が製品化プロセスを加速できるようにすることを目指しています。わずか数行のコードで、データのクリーニング、機能エンジニアリング、モデルの選択を自動的に完了し、さらに探索と反復を行うために高性能モデルをトレーニングできます。 AutoML について: ニューラル ネットワーク アーキテクチャ検索 (NAS) の概要 | AutoML 資料の推奨事項を添付 プロジェクトリンク https://github.com/salesforce/TransmogrifAI オープンNRE#ニューラルネットワーク関係抽出ツールキット OpenNRE は、清華大学コンピューターサイエンス学部の Zhiyuan Liu 教授によってオープンソース化された、TensorFlow に基づくニューラル ネットワーク関係抽出ツールキットです。 このプロジェクトでは、関係性の抽出を埋め込み、エンコーダー、セレクター、分類器の 4 つのステップに分割します。 プロジェクトリンク https://github.com/thunlp/OpenNRE TensorFlow モデル分析#TensorFlow モデル分析オープンソースライブラリ TFMA は、TensorFlow ユーザーがトレーニング済みのモデルを分析するのに役立つ、Google のオープンソース ライブラリです。 ユーザーは、Trainer で定義されたメトリックを使用して、分散方式で大量のデータに対してモデルを評価できます。これらのメトリックはさまざまなデータに対して計算でき、その結果は Jupyter Notebook で視覚化できます。 プロジェクトリンク モデル分析 #一般的なディープラーニングモデル展開フレームワーク GraphPipe は、Oracle がオープンソース化した一般的なディープラーニング モデル展開フレームワークです。これは、ユーザーが機械学習モデルの展開を簡素化し、特定のフレームワークのモデル実装から解放できるように設計されたプロトコルとソフトウェアのコレクションです。 GraphPine は、ディープラーニング フレームワーク全体のモデル用のユニバーサル API、すぐに使用できるデプロイメント ソリューション、強力なパフォーマンスを提供します。現在、TensorFlow、PyTorch、MXNet、CNTK、Caffe2 などのフレームワークをサポートしています。 プロジェクトリンク 参考: ONNX モデル動物園#一般的なディープラーニング事前トレーニングモデルコレクション このプロジェクトは、最も人気のあるディープラーニングの事前トレーニング済みモデルをまとめたものです。モデルはすべて、Facebook と Microsoft が立ち上げた ONNX (OpenNeural NetworkExchange) 形式であり、異なるフレームワーク間でモデルを移行できます。各モデルには対応する Jupyter Notebook があり、モデルのトレーニング、実行中の推論、データセット、参照などの情報が含まれています。 プロジェクトリンク https://github.com/onnx/models ディープラーニングに基づく106ポイントの顔キャリブレーションアルゴリズム #良心的なオープンソースの顔キャリブレーションアルゴリズム 顔の美化、メイクアップ、協調的な生体検出、顔のキャリブレーションの前処理手順を含む、良心的なオープンソースの顔キャリブレーション アルゴリズム。このプロジェクトの Windows プロジェクトは、従来の SDM アルゴリズムに基づいています。オープンソース コードを変更することで、テスト コードを合理化して保持し、コード構造を最適化します。 Android コードはディープラーニングに基づいています。堅牢で多面的な追跡をサポートする効率的なネットワーク モデルを設計しました。 現在、ディープラーニングアルゴリズムは顔のキャリブレーションにおいて優れた結果を達成しています。このプロジェクトは、比較的シンプルで使いやすい実装方法を提供することを目指しています。
|
<<: AIの次の大きな課題:言語のニュアンスを理解すること
>>: APP がアルゴリズムにこだわっているとき、パーソナライズされたカスタマイズを通じて「自分自身」を理解できるでしょうか?
Alpha Goの勝利により、人工知能における「ディープラーニング」の概念が急速に普及し、画像認識の...
「私は今、Miqu が Perplexity Labs の Mistral-Medium と同じモデ...
導入CART は C4.5 に似ており、決定木アルゴリズムの一種です。さらに、一般的な決定木アルゴリ...
[[264806]]新たな産業変革の中核的な原動力であり、将来の発展に関わる戦略的技術として、国は人...
ウォータールー大学の応用数学教授であるクリス・バウチ氏は、新しいディープラーニングアルゴリズムの結果...
将来のある時点で、人類は火星探査の旅に出る可能性が高いでしょう。最近、NASAの研究者らが、コンパク...
人工知能 (AI) は誕生以来長い道のりを歩み、大きな進歩を遂げています。これは、Amazon や ...
検索エンジンは誕生以来、基本的な検索エージェントから人工知能 (AI) と機械学習 (ML) に基づ...
AI の初心者向けに、AI の注目すべき 6 つの分野と、その概要、重要性、現在の使用方法、研究し...
タンパク質予測モデルAlphaFoldがAIの世界に津波のような波を起こした後、Alphaファミリー...
60年間、人類は抗生物質の研究において大きな進歩を遂げていません。しかし、このギャップはAIによって...
[51CTO.com からのオリジナル記事] 8月8日は真夏の週末だったが、午前8時過ぎ、市外の工...