最新のAIオープンソースプロジェクト12件をダウンロードする必要があります

最新のAIオープンソースプロジェクト12件をダウンロードする必要があります

[[242968]]

#TensorFlow に基づく強化学習フレームワーク

Dopamine は、強化学習アルゴリズムのプロトタイプを迅速に作成するための研究フレームワークです。TensorFlow をベースとし、小さくて簡単にアクセスできるコード ベースを求めるユーザーのニーズを満たす、シンプルで使いやすい実験環境を研究者に提供することを目的としています。ユーザーは、研究プロセス中にアイデアを検証するための実験を簡単に構築できます。

プロジェクトリンク

https://github.com/google/dopamine

トランスモグリフAI

#構造化データ用のエンドツーエンドの AutoML ライブラリ

TransmogrifAI は、Salesforce によってオープンソース化された、Scala で記述され、Spark 上で実行される AutoML ライブラリです。このプロジェクトは、自動機械学習テクノロジーを通じて開発者が製品化プロセスを加速できるようにすることを目指しています。わずか数行のコードで、データのクリーニング、機能エンジニアリング、モデルの選択を自動的に完了し、さらに探索と反復を行うために高性能モデルをトレーニングできます。

AutoML について: ニューラル ネットワーク アーキテクチャ検索 (NAS) の概要 | AutoML 資料の推奨事項を添付

プロジェクトリンク

https://github.com/salesforce/TransmogrifAI

オープンNRE

#ニューラルネットワーク関係抽出ツールキット

OpenNRE は、清華大学コンピューターサイエンス学部の Zhiyuan Liu 教授によってオープンソース化された、TensorFlow に基づくニューラル ネットワーク関係抽出ツールキットです。 このプロジェクトでは、関係性の抽出を埋め込み、エンコーダー、セレクター、分類器の 4 つのステップに分割します。

プロジェクトリンク

https://github.com/thunlp/OpenNRE

TensorFlow モデル分析

#TensorFlow モデル分析オープンソースライブラリ

TFMA は、TensorFlow ユーザーがトレーニング済みのモデルを分析するのに役立つ、Google のオープンソース ライブラリです。 ユーザーは、Trainer で定義されたメトリックを使用して、分散方式で大量のデータに対してモデルを評価できます。これらのメトリックはさまざまなデータに対して計算でき、その結果は Jupyter Notebook で視覚化できます。

プロジェクトリンク

モデル分析

#一般的なディープラーニングモデル展開フレームワーク

GraphPipe は、Oracle がオープンソース化した一般的なディープラーニング モデル展開フレームワークです。これは、ユーザーが機械学習モデルの展開を簡素化し、特定のフレームワークのモデル実装から解放できるように設計されたプロトコルとソフトウェアのコレクションです。 GraphPine は、ディープラーニング フレームワーク全体のモデル用のユニバーサル API、すぐに使用できるデプロイメント ソリューション、強力なパフォーマンスを提供します。現在、TensorFlow、PyTorch、MXNet、CNTK、Caffe2 などのフレームワークをサポートしています。

プロジェクトリンク

参考:

ONNX モデル動物園

#一般的なディープラーニング事前トレーニングモデルコレクション

このプロジェクトは、最も人気のあるディープラーニングの事前トレーニング済みモデルをまとめたものです。モデルはすべて、Facebook と Microsoft が立ち上げた ONNX (OpenNeural NetworkExchange) 形式であり、異なるフレームワーク間でモデルを移行できます。各モデルには対応する Jupyter Notebook があり、モデルのトレーニング、実行中の推論、データセット、参照などの情報が含まれています。

プロジェクトリンク

https://github.com/onnx/models

ディープラーニングに基づく106ポイントの顔キャリブレーションアルゴリズム

#良心的なオープンソースの顔キャリブレーションアルゴリズム

顔の美化、メイクアップ、協調的な生体検出、顔のキャリブレーションの前処理手順を含む、良心的なオープンソースの顔キャリブレーション アルゴリズム。このプロジェクトの Windows プロジェクトは、従来の SDM アルゴリズムに基づいています。オープンソース コードを変更することで、テスト コードを合理化して保持し、コード構造を最適化します。 Android コードはディープラーニングに基づいています。堅牢で多面的な追跡をサポートする効率的なネットワーク モデルを設計しました。 現在、ディープラーニングアルゴリズムは顔のキャリブレーションにおいて優れた結果を達成しています。このプロジェクトは、比較的シンプルで使いやすい実装方法を提供することを目指しています。

[[242989]]

<<:  AIの次の大きな課題:言語のニュアンスを理解すること

>>:  APP がアルゴリズムにこだわっているとき、パーソナライズされたカスタマイズを通じて「自分自身」を理解できるでしょうか?

ブログ    
ブログ    

推薦する

中国チームが超伝導において新たな大きな進歩を遂げました! LK-99のような物質は、再現性と検証性を備えた超伝導性を示す。

室温超伝導に新たな進歩はありますか?華南理工大学、中南大学、中国電子科技大学の研究者らは12月19日...

機械学習によるディープラーニングが企業の今後の方向性となる理由

機械アルゴリズムのディープラーニングは、ビジネスの世界に多くの変化をもたらしました。定義上、これは人...

NetEase Games AIOps実践:異常検知の最適化戦略とプラットフォーム構築

この共有では主に以下の点が紹介されます。 AIOps ロードマップ異常検出プラットフォーム構築インテ...

...

階段を登るための最小コストを使用するデータ構造とアルゴリズム

[[443068]]最小限のコストで階段を登るLeetCode の問題へのリンク: https://...

多くの競争者が競い合う中、自動運転をめぐる戦いが始まる!

著者: 張傑[51CTO.comより引用] 2020年と比べると、2021年の自動運転業界にはよりエ...

プライベート5GとAI技術は自動化から自律性への移行を加速させる

モノのインターネットとインダストリー 4.0 の登場以来、マシン ビジョン、人工知能、機械学習、ディ...

知らないのに知っているふりをしないでください!機械学習とディープラーニングを理解しましたか?

機械学習とディープラーニングは人工知能の分野に属しますが、両者の間には大きな違いがあります。これら ...

コインの端を歩くこともできます!陸上最小のカニ型ロボットが開発され、将来的には低侵襲手術に利用できるようになる。

この「横歩き」マイクロロボットはとってもかわいいです!サイエンス・ロボティクス誌5月号に、サブミリメ...

毎日のアルゴリズム: スパイラルマトリックス

[[431971]]この記事はWeChatの公開アカウント「3分でフロントエンドを学ぶ」から転載した...

知能の本質:人間の知能と人工知能

なぜコンピューターは知能を発揮できるのでしょうか? コンピューターの知能と人間の知能の類似点、相違点...

顔認識アルゴリズムはどのように機能するのでしょうか?

過去 10 年間で、ディープラーニングの分野では多くの高度な新しいアルゴリズムと画期的な研究が登場し...

約100機のドローンが「爆発」し、重慶の建物に墜落した!プログラムエラー、ホストクラッシュ

ドローンが墜落することは珍しくありませんが、数十機、あるいは数百機ものドローンが同時に墜落したらどう...

ビジネスに適したRPAソフトウェアの選び方

[[407899]] [51CTO.com クイック翻訳]研究によると、企業の従業員がより生産的な仕...