実現可能な AI、SF から科学的事実へ: 今日の AI の現実

実現可能な AI、SF から科学的事実へ: 今日の AI の現実

人工知能(AI)の概念は何千年も前から存在しています。 AI の物語は歴史を通じて世界中に広がっています。ギリシャ神話のヘパイストスは黄金のロボットを「作成」し、圓子 (紀元前 1023 ~ 957 年、周王朝) はロボットを「構築」し、レオナルド ダ ヴィンチはロボットの騎士を作り上げました。かつては夢だったもの、あるいは誰かの大胆な想像が、今や現実のものとなったのです。

アリストテレス (紀元前 384-322 年) は、いわゆる単純な概念である「三段論法」を考案しました。本質的には、結論を導くために論理と推論に依存します。概念は、A = B かつ B = C であれば、A = C であるということです。私たちが真実であると信じているものを使って結果を予測する能力は革命的です。私たちはこの概念がいかに画期的なものであったかをあまり認識せずに、今日でもこの概念を使用しています。三段論法などの理論は、私たちを 21 世紀の人工知能の現実へと導きます。

技術的な能力により、AI は飛躍的に成長し、機能的な現実となり、理論モデルを超えています。今日、私たちはさまざまなテクノロジーを利用して、複数レベルの知能を備えた人工知能を実現しています。 1955 年にジョン・マッカーシー氏 (とチーム) が初めて「人工知能」という言葉を生み出して以来、私たちは大きな進歩を遂げてきました。それ以来、私たちのテクノロジーは進化を続け、AI の定義やその可能性に対する理解も進化してきました。まだ拍手しないでください。進歩は遂げていますが、私たちが目にしたのは氷山の一角にすぎません。 AI には主に 4 つのカテゴリがあり、将来的にはさらに増える可能性があります。現在、私たちは第 2 カテゴリのトップに立っています。

[[236937]]

さまざまな種類の AI を詳しく見てみましょう。

*** AIの種類: 反応型マシン

このタイプの AI は純粋にロジックに基づいており、メモリはありません。ある意味、現在の決定に影響を与える可能性のある過去の出来事を記憶していないのです。最初のタイプの AI の例としては、1990 年代に IBM が設計したチェス コンピューター「Deep Blue」が挙げられます。

2番目のタイプの人工知能:限られたメモリ

それが今日の私たちの状況だと思います。機械は過去を振り返り、未来について判断し、周囲の状況を理解することができます。自動運転車は、2 番目のタイプの AI の一例です。これらの車両は周囲の環境を感知し、人間の介入なしに走行することができます。 AI の 2 番目のカテゴリの現在のアプリケーションを詳しく見てみましょう。

  • 自動化 (A) - 定義はいろいろありますが、最も基本的な定義を見てみましょう。自動化は、通常は人間が行う作業を機械が引き継ぐときに発生します。自動化の一例としては、火災発生時に地方自治体に連絡し、スプリンクラーシステムを作動させることができる最新のホームセキュリティ システムがあります。
  • 機械学習 (ML) – これは、明示的にプログラムすることなく、システムが自動的に学習し、時間の経過とともに学習を改善できるようにする AI のアプリケーションです。これらのシステムは、データにアクセスし、データ自体を使用できるコンピュータ プログラムの開発に重点を置いています。 Siri や Alexa などの今日の音声認識システムは、機械学習とディープ ニューラル ネットワークを使用して人間の反応を模倣します。これらのシステムが進化するにつれて、言語のニュアンスや意味を理解することを学習し、自然言語を処理できるようになります。
  • 予測分析 (PA) – 予測分析では、その用途に応じて、さまざまな統計モデルと機械学習技術を使用して、現在の情報と履歴情報を分析して予測を行います。広義では、未知の将来の出来事を予測するために使用されますが、予測分析はあらゆる種類の仮説的予測に適用できます。予測分析の一般的な例は、金融機関で最も一般的である不正検出です。
  • 自然言語処理 (NLP) – コンピュータが言語を処理および分析する能力。この分野では大きな進歩を遂げてきましたが、まだ道のりは長いです。この特定のタイプの AI が私たちにとって課題となっていることは驚くことではありません。言語は非常に複雑です。過去に受講した語学コースを思い出してください。はい、英語や文法のコースも含まれています。このタイプの AI を実現するのは非常に困難です。 AIは「正しい」フレーズや文章だけでなく、「口語的な」フレーズや文章も理解する必要があります。こうした課題にもかかわらず、Google、Microsoft、Apple、Amazon などの企業は自然言語処理に多額の投資を行っています。

3番目のタイプの人工知能:心の理論

心の理論は人々がとても好む心理学用語です。これは、特定の精神状態(信念、願望、目標、意図など)を他人に帰属させる能力を指します。また、人々がこれらの精神状態を理解し、それを自分自身の精神状態と区別することも必要です。心の理論を備えたコンピュータは、対象を純粋で機械的で無生物としてではなく、独自の精神世界を持つ意識のある個体として認識します。 AI の心の理論の架空の例としては、「スターウォーズ」映画に登場する人気のロボット R2D2 が挙げられます。

4番目のタイプの人工知能:意識

人工知能の最終段階は人工意識です。それが何で構成されるかは、まだ正確には定義されていません。知的要素と感情的要素が含まれていますか? 感情 (喜び、痛み、幸福、愛など) を感じる能力が含まれていますか? 自己認識が含まれていますか? 上記のすべて、およびそれ以上のものが含まれる場合があります。

現実というよりはSFのように思えるかもしれないが、現実への道は私たちが思っているよりも短いのかもしれない。 AI 意識の概念が理論から可能性へと進歩するにつれて、今日のタイプ II AI への関心が高まっているのと同じように、この分野への関心も高まるでしょう。 AI の意識が人類と私たちの存在に脅威を与えるかどうかについては、まだ多くの議論があります。意識を持つ AI エンティティに対して、私たちがどのような脅威をもたらす可能性があるかについても考えられています。人工知能による意識は、まさにロビン・ウィリアムズ(1999 年)が演じたバイセンテニアル・マンのような架空のロボットの究極の目標です。

カテゴリー 3 AI の実現には 10 ~ 20 年、カテゴリー 4 AI の実現には 30 ~ 50 年かかると予測する人もいます。できれば、私は生きている間にこの発展段階を経験したいと考えています。そして、それがこの段階への小さな一歩であっても、革命的なものとなることを願っています。 AI の進歩を利点と捉える人もいれば、脅威と捉える人もいます。

このためらいや躊躇はすべて、失ったり、置き換えられたりするのではないかという恐れによるものです。人工知能はかつて人間が担っていた仕事を完了することができ、国家の収入源に影響を与える可能性があります。一部の政府機関はロボットへの課税を検討している。この分野における大きな進歩と将来の発展は私たちを興奮させると同時に、未知の世界に踏み込む際に潜在的な懸念ももたらします。将来、真の人工知能が現実のものとなったとき、私たちは恐れるべきでしょうか、それとも希望を持つべきでしょうか? それは時が経てばわかるでしょう。

<<:  AIは人間の仕事を奪うが、これらの業界ではより多くの仕事も生み出すだろう

>>:  人工知能+5G:時代はあなたに挨拶もせずに見捨てた?

ブログ    

推薦する

スループットが約30倍に増加しました。田元東チームの最新論文は、大規模モデル展開の問題を解決している

大規模言語モデル (LLM) は今年非常に人気がありました。しかし、その驚異的な効果の背後には、巨大...

ちょうど今、ビートルズはAIがプロデュースした「最後の」新曲をリリースした。

音楽に詳しい友人なら、ビートルズを知らない人はいないでしょう。ビートルズは、歴史上最も偉大で最も影響...

2010年以降、MLコンピューティングパワーの需要は100億ドル増加し、6か月で2倍になり、ディープラーニングは画期的な分野となった。

計算能力、データ、アルゴリズムは、現代の機械学習 (ML) の進歩を導く 3 つの基本的な要素です。...

Javaで機械学習を始める方法

[[201237]] Java で機械学習を始めるのに最適なツールは何ですか?この質問はしばらく前か...

データから診断へ: 緑内障検出のためのディープラーニング手法

緑内障は、世界中の無数の人々に回復不可能な失​​明を引き起こす障害の主な原因です。緑内障自体は、眼と...

AI サイバーセキュリティ脅威マップ

12月15日、欧州連合ネットワーク情報セキュリティ機関(ENISA)は、 「人工知能サイバーセキュリ...

10行のコードで物体検出を実行する方法

導入人工知能の重要な分野はコンピュータービジョンです。コンピューター ビジョンは、コンピューターとソ...

仕事の未来に役立つAIの3つの重要な要素

[[255096]]私たちは今、デジタル変革を通じて、人工知能 (AI) と機械学習という 1 つの...

サイバーセキュリティにおける人工知能の応用

1956年、ダートマス大学で開催された会議で、コンピューターの専門家であるジョン・マッカーシーが初め...

AIはサプライヤーが直面する5つの大きなリスクを軽減するのに役立ちます

人工知能は現代のビジネス界に多くの変化をもたらしています。多くの企業が AI を活用して顧客をより深...

IBM Cloud Pak for Data 4.0 で大規模なインテリジェント オートメーションを統合

あなたのビジネスが本当に予測可能かどうか、そしてデータ担当者、モデル、アプリケーションが適切なデータ...

顔認識の時代に顔を守る方法

シャオ・ワンは最近少しイライラしている。毎日仕事が終わったらすぐにジムに行って運動していたのですが、...