開発者がアプリケーションを作成しやすくなるオープンソース ツールが登場したことにより、機械学習の分野自体が驚異的な成長を遂げています。 (たとえば、機械学習の分野で 5 年以上の経験を持つドイツ出身の Andrey Bu 氏は、さまざまなオープンソース フレームワークを使用して魅力的な機械学習プロジェクトを作成しています。) Python は機械学習フレームワークの大部分で使用されている言語ですが、JavaScript も遅れをとっていません。 JavaScript 開発者は、さまざまなフレームワークを使用して、ブラウザで機械学習モデルをトレーニングおよびデプロイできます。 JavaScriptの機械学習フレームワークのトップ5をご紹介します 1. テンソルフローTensorFlow.js は、ブラウザ内で完全に機械学習プログラムを実行できるオープンソース ライブラリです。これは、更新されなくなった Deeplearn.js の後継です。 TensorFlow.js は Deeplearn.js の機能を改善し、ブラウザを最大限に活用してより深い機械学習エクスペリエンスを実現します。 このオープンソース ライブラリを使用すると、強力で直感的な API を使用して、ブラウザでモデルを定義、トレーニング、デプロイできます。さらに、WebGL と Node.js のサポートも自動的に提供されます。 ブラウザにインポートしたいトレーニング済みのモデルがある場合。 TensorFlow.js を使用すると、これが可能になります。また、ブラウザを離れずに既存のモデルを再トレーニングすることもできます。 2. 機械学習ツールライブラリブラウザで広範な機械学習機能を提供するリソースベースのオープンソース ツールは数多くあります。この機械学習ツール ライブラリは、これらのオープンソース ツールのコレクションです。このライブラリは、教師なし学習、教師あり学習、データ処理、人工ニューラル ネットワーク (ANN)、数学、回帰など、いくつかの機械学習アルゴリズムのサポートを提供します。 Python ユーザーであり、ブラウザで JavaScript による機械学習を実行できる Scikit-learn に似たものを探している場合、このツールキットがニーズを満たします。 3. ケラスKeras.js は、WebGL を使用して GPU モードのサポートを提供し、ブラウザーで機械学習モデルを実行できるようにする、もう 1 つの人気のあるオープン ソース フレームワークです。 Node.js を使用したモデルがある場合は、GPU モードでのみ実行できます。 Keras.js は、Microsoft Cognitive Toolkit (CNTK) などの任意のバックエンド フレームワークを使用したモデル トレーニングもサポートします。 Inception v3 (ImageNet でトレーニング済み)、50 層冗長ネットワーク (ImageNet でトレーニング済み)、畳み込み変分オートエンコーダ (MNIST でトレーニング済み) など、いくつかの Keras モデルをクライアント ブラウザーにデプロイできます。 4. ブレイン機械学習の概念は非常に重要であるため、この分野に参入したばかりの人はやる気をなくしてしまうかもしれません。この分野の学術用語や専門用語は、初心者を圧倒させるかもしれません。上記の問題を解決できることが、Brain.js の利点です。これは、ニューラル ネットワークの定義、トレーニング、実行のプロセスを簡素化するオープン ソースの JavaScript ベースのフレームワークです。 機械学習の分野にまったく不慣れな JavaScript 開発者の場合、Brain.js を使用すると学習曲線を短縮できます。 Node.js で使用することも、クライアント ブラウザーで実行して機械学習モデルをトレーニングすることもできます。 Brain.js は、フィードフォワード ネットワーク、エルマン ネットワーク、ゲート付き再帰型ユニット ネットワークなど、いくつかの種類のニューラル ネットワークをサポートしています。 5. STDライブラリSTDLib は、JavaScript および Node.js アプリケーション用のオープン ソース ライブラリです。ブラウザーで実行され、科学および数値アプリケーションをサポートする Web ベースの機械学習アプリケーションをお探しの場合は、STDLib がニーズを満たします。 このライブラリは、高性能な機械学習モデルの構築に役立つ包括的かつ高度な数学および統計関数を提供します。豊富な機能を使用して、アプリケーションやその他のライブラリを構築することもできます。さらに、データの視覚化と探索的データ分析のためのフレームワークが必要な場合は、STDLib が役立ちます。 要約する機械学習の刺激的な世界に踏み込もうとしている JavaScript 開発者、または JavaScript の実験を始めようと計画している機械学習の専門家であれば、上記のオープン ソース フレームワークは興味をそそるでしょう。 |
<<: 多くの企業が自社のサービスはAIだと主張しているが、実際はAIのふりをしている人間である。
>>: インタラクティブな推測 | ワールドカップとブラックテクノロジーが出会ったとき、最終的な勝者は誰になるでしょうか?
[[238335]]ビッグデータダイジェスト制作編纂者: Shijintian、Ni Ni、Hu J...
世界の建設業界の現状人口ボーナスの消滅により、中国の建設業界は人件費への大きな圧力に直面しているほか...
世界経済フォーラムが最近発表した報告書によると、2025年までに世界の仕事の半分はロボットによって行...
最近、北京人工知能研究院と清華大学の研究チームは共同で、中国語を中核とした大規模な事前学習済み言語モ...
科学者たちは長期にわたる調査により、人類文明の進歩が指数関数的な上昇傾向を示していることを発見した。...
マルチエージェント経路探索 (MAPF) は、人工知能、ロボット工学、理論計算機科学、実践的オペレー...
今日のデジタル マーケティング担当者にとっての課題は、共感を得るためにすべてのプラットフォームでブラ...
長い間、CV トレーニングは 2 次元データに限定されてきました。3 次元データのラベル付けにはコス...
最近、クライアントの開発チームと SQL Server データ マイニングとそのアプリケーションにつ...
臨床試験はここ数年で大きく変化しました。医薬品や医療機器、そしてそれらが影響を与える対象となる症状が...