Metaは、すべての製品のビデオ推奨エンジンをサポートする巨大なAIモデルを構築しています。

Metaは、すべての製品のビデオ推奨エンジンをサポートする巨大なAIモデルを構築しています。

3月7日水曜日、Metaの上級幹部は米国時間、同社がFacebookを含む傘下のさまざまなプラットフォームの動画推奨エンジンをサポートできる高度なシステムを構築するため、人工知能に多額の投資を行っていることを明らかにした。

MetaでFacebookプラットフォームを担当するトム・アリソン氏は、このプロジェクトが同社の「2026年技術開発ロードマップ」の重要な部分であることを明らかにした。彼は、この新しい AI 推奨モデルは、TikTok の Reels に似た短編動画サービスをサポートするだけでなく、より伝統的な長編動画コンテンツもカバーすると詳しく説明しました。

エリソン氏はサンフランシスコで開催されたモルガン・スタンレー・テクノロジー・カンファレンスで、Metaは現在、リール、グループ、コアFacebookニュースフィードなどの製品ごとに個別の推奨モデルを使用していると述べた。新しい巨大な AI モデルは、この状況を変え、プラットフォーム間で統一された推奨を実現することが期待されています。

Meta が人工知能分野に参入するための重要なステップとして、同社は Nvidia GPU の購入に数十億ドルを投資しました。これらの GPU は、AI 研究者が大規模な言語モデルをトレーニングし、ChatGPT のような生成 AI モデルを強化するための主要なツールです。

アリソン氏はまた、Meta の技術ロードマップの「第 1 フェーズ」についても詳しく説明しました。同社は製品のパフォーマンスを向上させるために、既存の推奨システムを従来のコンピュータ チップから GPU に移行しています。

同氏は、昨年の大規模言語モデルへの流行の影響を受けて、Meta の上級管理職は、これらのモデルが大量のデータを処理し、チャットなどの一般的な機能を備えていることに大きな衝撃を受けたと明かした。そのため、Meta は製品全体に適用できる巨大な推奨モデルを開発できる可能性を見出し、昨年この新しいアーキテクチャを迅速に構築しました。現在、このモデルはReelsショートビデオサービスで予備テストされています。

エリソン氏はさらに、この新しい「モデルアーキテクチャ」がFacebookのコアアプリで大きな成果を上げ、視聴時間が8~10%増加したと指摘した。これは、このモデルがデータ学習能力において前世代のモデルを上回っていることを示しています。

彼は、Meta がこれらのモデルを適切なハードウェア上で拡張できるようにするためにさらなる投資を行っていることを強調した。同社は現在、システム構築の「第3フェーズ」におり、新技術の有効性を検証し、複数の製品に展開していくことに重点を置いている。

アリソン氏は次のように語った。「私たちの目標は、Reels ショートビデオ サービスを強化するだけでなく、単一の巨大なモデルを使用してビデオ推奨エコシステム全体を駆動し、最終的には情報フロー推奨製品を組み込むことです。これにより、推奨コンテンツがより魅力的で関連性のあるものになるだけでなく、推奨エンジンの応答性も向上すると考えています。」

計画が成功した場合、ユーザーエクスペリエンスはどのように変化するでしょうか? 「例えば、ユーザーがリールで何か興味深いものを見つけて、Facebook ニュースフィードに戻った場合、以前のデータとモデル分析に基づいて、より類似したコンテンツを表示できます」とアリソン氏は説明した。

この壮大な計画をサポートするために、アリソン氏はMetaが大量のGPUリソ​​ースを蓄積していることを明らかにした。これらの高性能コンピューティング ユニットは、ビデオ推奨モデルの駆動に使用されるだけでなく、インテリジェント デジタル アシスタントの開発など、生成 AI のより広範な分野における同社のプロジェクトもサポートします。

Meta は、コア情報フローにさらに複雑なチャット ツールを追加し、ユーザーが興味のあるコンテンツを見たときに簡単な操作でより関連性の高い情報を取得できるようにするなど、生成型人工知能テクノロジのさまざまな応用シナリオを模索しています。たとえば、テイラー・スウィフトに関するおすすめの投稿が表示された場合、ユーザーはボタンをクリックするだけで Meta AI に質問し、詳細情報を得ることができます。

Meta は、AI チャット ツールをグループに統合することも計画しています。たとえば、Facebook のベーキング グループでは、メンバーはデザート作りに関する質問にデジタル アシスタントから直接回答を得ることができます。

「私たちには、生成型 AI をマルチユーザーインタラクティブ環境に導入する能力があると信じています」とアリソン氏は語った。

<<:  AIが不動産業務を簡素化する方法

>>:  センシング、AI、想像力:視覚がモノのインターネットをどう形作るか

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

会話型AIとその技術コンポーネントの機能を探る

今日では、自動化、人工知能 (AI)、自然言語処理 (NLP) の進歩により、コスト効率の高いデジタ...

メタバース技術は人間とコンピュータの相互作用の効率を向上させることができるか?

1. メタバースとは何ですか? Metaverse は、ブロックチェーンと AI (人工知能)、V...

あなたが知らないかもしれないゲームにおける AI に関する 5 つの予測

仮想現実ゲームの発展により、ゲームのプレイ方法や交流の仕方が急速に変化しています。仮想現実はゲームの...

AIは人間ではないため、米国特許庁はAIの発明の全てを認めない

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

コロナウイルス:スマートシティ変革のきっかけ

都市環境は、物理的、デジタル的、人間的システムを統合し、住民と企業に優れた成果をもたらします。 [[...

2020 年のベスト AI ソフトウェア開発ツール

[[328252]] AI がソフトウェア エンジニアリングやテクノロジー企業に与える影響は否定でき...

AIが「ツール人」を救う: RPA+AIがすべてを自動化

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

日常生活におけるAIの優れた活用例

人工知能は、テクノロジーやビジネスの世界で広く議論されている人気のテクノロジーの 1 つです。 さま...

人工知能革命は雇用を創出するのか、それとも雇用を破壊するのか?

技術革命への懸念私たちは技術革命を心配すべきでしょうか、それとも期待すべきでしょうか。一方では、技術...

AI搭載のレンガ積みロボットが建設業界に革命を起こす

現在、建設部門は大規模なプロジェクトによって活性化しており、大きな成長を牽引しています。しかし、これ...

新たな黄金の10年が近づく中、人工知能はどのような機会と課題に直面するのでしょうか?

3月11日、全国人民代表大会の2つの会議が閉会した。「人工知能」は引き続きホットな話題だが、今年の...

...

Panda-Gym のロボットアームシミュレーションを使用したディープ Q 学習強化学習

強化学習 (RL) は、エージェントが試行錯誤を通じて環境内でどのように動作するかを学習できるように...