生成 AI: サイバーセキュリティにとってのメリットか、それとも危険か?

生成 AI: サイバーセキュリティにとってのメリットか、それとも危険か?

脅威の状況が絶えず変化する中、高度なサイバー攻撃に対する防御手段として、生成型人工知能 (GAI) がますます注目を集めています。では、生成 AI はサイバーセキュリティにとって恩恵となるのでしょうか、それとも危険となるのでしょうか?

しかし、他の強力なツールと同様に、サイバーセキュリティへの影響については激しい議論が交わされています。生成的敵対ネットワーク (GAN) や自己回帰モデルなどの技術を含む生成 AI は、サイバーセキュリティ コミュニティに希望と懸念の両方をもたらしました。これはサイバー防御を強化できる恩恵となるのか、それともデジタル脆弱性による被害を増幅させる可能性があるのか​​?

潜在的なメリット

生成 AI は、多くの場合、生成的敵対ネットワーク (GAN) や変分オートエンコーダー (VEE) などのディープラーニング モデルを活用しており、大規模なデータセットから学習し、人間が作成したデータと非常によく似たコンテンツを生成することができます。

脅威の検出と分析: 生成 AI は、サイバー脅威を検出する従来の方法を強化できます。履歴データからパターンを学習することで、新しい攻撃ベクトルや脆弱性を予測して特定できます。

データ拡張: 機械学習アルゴリズムのトレーニングには、大量のラベル付きデータが必要です。生成 AI は現実世界のシナリオを反映した合成データを作成できるため、機密情報を危険にさらすことなく、AI 駆動型セキュリティ システムの精度と堅牢性を向上させることができます。

フィッシングやなりすましの削減: サイバー犯罪者は、フィッシングやファーミングなどの欺瞞的な手法を頻繁に使用します。生成 AI は、潜在的なフィッシング攻撃をシミュレートおよび予測するために使用できます。

潜在的な危険

生成 AI は大きな可能性を秘めていますが、サイバーセキュリティに適用すると大きな懸念も生じます。

攻撃能力の強化: AI は防御メカニズムを強化できるのと同様に、サイバー犯罪者の能力も強化できます。ハッカーは生成 AI を使用して、従来のセキュリティ対策を回避する複雑でカスタマイズされた攻撃を作成し、検出と対処を困難にすることができます。

AI 生成ディープフェイク: 生成 AI を搭載したディープフェイクは、オーディオおよびビジュアル コンテンツを前例のないレベルで操作できるため、なりすまし攻撃、偽ニュースの拡散、通信チャネルの信頼の損なわれなどの分野でリスクをもたらします。

プライバシーのリスク: 生成 AI には大規模なデータセットからの学習が含まれており、その性質上、トレーニングに使用されるデータの所有者のプライバシーに関する懸念が生じます。この技術は、倫理的かつ責任を持って取り扱われない場合、個人情報の漏洩につながる可能性があります。

サイバーセキュリティにおける生成的 AI の活用事例: AI 時代のデジタル防御の強化

脅威がますます高度化、動的化しているサイバーセキュリティの世界では、生成型人工知能 (GAI) が強力な味方として登場しています。

異常検出と脅威ハンティング:異常検出は効果的なサイバーセキュリティの中心です。 GAI は、システム内の「正常な」動作パターンを理解して学習する能力を備えているため、大きな進歩の兆しとなる可能性のある逸脱を識別するのに適したツールとなります。

フィッシングの検出と防止:フィッシング攻撃は依然として根強い脅威であり、多くの場合、偽の電子メールや Web サイトを通じて人間の脆弱性を悪用します。 GAI は、正当なコンテンツと悪意のあるコンテンツの大規模なデータセットを分析および比較することで、防御を強化できます。

脆弱性管理:脆弱性を修正する競争において、GAI はプロセスを簡素化します。コードを完全にスキャンし、潜在的な弱点を特定することで、脆弱性を自動的に評価できます。これにより、脆弱性の特定と優先順位付けが迅速化され、サイバーセキュリティ チームはリソースをより効果的に割り当てることができます。

行動ベースの認証:パスワードやトークンのみに依存する従来の認証方法は、侵害に対してますます脆弱になっています。 GAI は、システムやデバイスと個人の固有の相互作用パターンを活用する動作ベースの認証を導入します。

敵対的攻撃の緩和:逆説的ですが、GAI は攻撃と防御の両方に使用できます。敵対的攻撃では、AI システムを操作して誤った出力を生成します。 GAI を使用して、敵対的攻撃に対して堅牢なモデルを開発します。

<<:  AI開発と倫理におけるリアリズムの役割

>>: 

ブログ    
ブログ    

推薦する

AIがデータセンターの設計をどう変えるか

AI システムへの世界的な支出は 2023 年から 2026 年の間に 2 倍になると予想されており...

メールはAIの恩恵を受け、よりスマートになり、自動的にデータを促し、エラーを報告する

電子メールは日ごとに賢くなってきています。 Gmail では宛先不明の受信者を報告でき、Google...

...

CPU と比較して、GPU がディープラーニングに適しているのはなぜですか?

1. CPUとGPUの比較CPUは複数の機能を備えた優れたリーダーです。その利点は、強力なスケジュ...

Java プログラミング スキル - データ構造とアルゴリズム「プレフィックス、インフィックス、サフィックス」

[[387421]]接頭辞表現(ポーランド語表記)プレフィックス式はポーランド式とも呼ばれます。プ...

ポストコロナ時代の住宅建設において、スマート建築はどのように変化するのでしょうか?

スマート コンストラクションは、最適化されたプロセス、モデリング、仮想現実、3D レンダリング、監視...

「一歩ずつ考えよう」というマントラよりも効果的で、プロジェクトが改善されていることを示す

大規模言語モデル (LLM) は、適切なプロンプトがあれば、多くの自然言語処理タスクにとって強力なツ...

運輸省:2025年までに自動運転技術の産業化を推進

道路交通自動運転技術の開発と応用の促進に関する運輸省の指導意見:道路交通の自動運転技術の開発と応用を...

MITの画期的技術トップ10

MITテクノロジーレビューは毎年、その年の「トップ10のブレークスルーテクノロジー」を選出していま...

人工知能(AI)とスポーツスタジアムの融合

新型コロナウイルスCOVID-19の影響は今も続いており、世界中の多くのスポーツスタジアムが麻痺状態...

アマゾン ウェブ サービスが中国で新たな機械学習サービスを開始

[51CTO.com からのオリジナル記事]現在、ますます多くの企業が機械学習や人工知能に多額の資金...

...

上海の疫病対策において人工知能は何を果たしたのか?

4月8日、「上海デジタル変革リーディンググループオフィス」が主導し、上海スマートシティ発展研究所が...

2024 年のビッグデータ業界予測 (パート 3)

ディープラーニングディープフェイクの危険性: 2024 年には、特に仮想顧客サービス環境において、消...