モデルが GPT-3.5 のように数千億の規模に達すると、トレーニングと推論のための計算能力は一般的なスタートアップ企業には手が届かず、人々はそれを利用するのが非常に遅くなることが分かっています。 しかし、今週の時点で、その考えは過去のものとなった。 Groqというスタートアップ企業は、大規模な言語モデルタスクでGPUを上回るという機械学習プロセッサを開発した。NvidiaのGPUより10倍高速で、コストは10%、消費電力はわずか10分の1だ。 Groq 上で実行されている Llama 2 の速度は次のとおりです。 出典: https://twitter.com/emollick/status/1759633391098732967 Groq (Llama 2) と ChatGPT が同じプロンプトに直面したときの動作は次のとおりです。 画像ソース: https://x.com/JayScambler/status/1759372542530261154?s=20 信じられないかもしれませんが、これは事実です。興味のある方はぜひ試してみてください。 現在、Groq の公式 Web サイトでは、以下のモデルの試用版を提供しています。 公式サイトアドレス:https://groq.com/ Groq のプロセッサは LPU (Language Processing Unit) と呼ばれ、シーケンシャル コンポーネント (LLM など) を備えた計算集約型アプリケーションに極めて高速な推論速度を提供できる、新しいタイプのエンドツーエンドの処理ユニット システムです。 駆動する大規模モデルの速度は、前例のない 500 トークン/秒に達し、極めて低いレイテンシを実現します。 ハードウェアを使用してソフトウェアを高速化すると、常に大きなパワーと空飛ぶレンガのような感覚が人々に与えられます。 Groq は、最先端のオープンソース モデル Mixtral も LPU 上で実行しており、数百語を含む事実に基づいた参照付きの回答を 1 秒未満で返します (時間の 4 分の 3 は検索に費やされています)。 Groq が公開したデモ ビデオで、誰かが次のようにコメントしました。「これは速すぎます。こんなに速いはずはありません。」 そのため、一部のネットユーザーは、大きなモデルはコンテンツを生成する速度が速すぎるため、ユーザーエクスペリエンスの観点から、人間の目が追いつけないため、ページを自動的にめくるのはやめるべきだ、という提案をした。 おそらく、LPU のサポートにより、生成 AI は 2 年以内に検索エンジンに大きな脅威を与えることになるでしょう。これは Gartner が最近予測したとおりです。よく考えてみると、それは確かに合理的です。結局のところ、ニューラル ネットワークは GPU の計算能力の発達によって注目されるようになったのです。 なぜそんなに速いのでしょうか? GPU は数百のコアによる並列処理用に設計されており、主にグラフィック レンダリングに使用されますが、LPU のアーキテクチャは AI コンピューティングに確定的なパフォーマンスを提供するように設計されていると分析する人もいます。 LPU のアーキテクチャは、GPU で使用される SIMD (単一命令、複数データ) モデルとは異なり、複雑なスケジューリング ハードウェアを必要としない、より合理化されたアプローチを採用しています。この設計により、すべてのクロック サイクルを効率的に利用でき、一貫したレイテンシとスループットが保証されます。 エネルギー効率は、GPU に対する LPU のもう一つの注目すべき利点です。複数のスレッドの管理に関連するオーバーヘッドを削減し、コアの未使用を回避することで、LPU はワットあたりの計算能力を高め、より環境に優しい代替手段として位置付けられます。 Groq のチップ設計により、GPU クラスターに見られる従来のボトルネックなしに複数の TSP を接続できるため、非常にスケーラブルになります。これにより、LPU が追加されるにつれてパフォーマンスが線形に拡張され、大規模 AI モデルのハードウェア要件が簡素化され、開発者はシステムの再設計を行わずにアプリケーションを簡単に拡張できるようになります。 A100 や H100 が比較的不足している時代に、LPU は大規模モデルの開発者にとって新たな選択肢となるかもしれません。 Groqは2016年に設立されました。同社の創設チームはGoogle出身で、かつてはGoogleが自社開発したAIチップのテンソルプロセッシングユニットTPUシリーズを設計していました。公式サイトによると、Groq の創設者兼 CEO である Jonathan Ross 氏は、かつて TPU の作業の 20% を担当していたそうです。 ジョナサン・ロス。 昨年の高性能コンピューティング カンファレンス SC23 で、Groq は LPU 上で LLM を実行することで世界最高の低レイテンシ パフォーマンスを実証しました。当時、Groq は 1 秒あたり 280 トークンを超える速度で応答を生成することができ、Llama-2 70B 推論のパフォーマンス記録を更新しました。 Groq は今年 1 月に初めて公開ベンチマークに参加し、Anyscale の LLMPerf リーダーボードで他のクラウドベースの推論プロバイダーをはるかに上回る優れた結果を達成しました。 画像ソース: https://github.com/ray-project/llmperf-leaderboard?tab=readme-ov-file 人工知能はテクノロジーの世界に旋風を巻き起こしました。 2023 年は世界が AI が現実のものとなることを認識する年になるかもしれません。そして 2024 年は AI が単なる仮説ではなく現実のものとなる年になるでしょう。これはジョナサン・ロスがかつて指摘した点です。 100 万トークンのコンテキストを備えた Gemini Pro 1.5、1 秒あたり 500 トークンの推論速度を備えた Groq、さらに優れた推論機能を備えた GPT-5 があるのに、夢はまだ遠いのでしょうか? |
<<: 大規模モデル向けの最速推論チップが一夜にして手に入りました。1秒あたり500トークンで、GPUを上回ります。 Google TPUチームがそれを構築し、ウルトラマンに叫ぶ: あなたは遅すぎる
>>: さらに混沌です!ソラになりすました実在の人物の動画がすでに存在し、ウィル・スミスがパスタを食べながらミームを演じる
消費されるコンピューティング リソースは、従来の Stable Video Diffusion (S...
[[195601]]ディープラーニングは機械学習のサブセットであり、さまざまな方法を使用して人工知能...
9月21日、openKylinオペレーティングシステムは今晩、ビッグモデルへのアクセスを正式に発表し...
今日の人工知能、ビッグデータ、自動化の時代では、技術的なスキルとデータリテラシーが非常に重要です。し...
画像からビデオへの生成 (I2V) タスクは、静止画像を動的なビデオに変換することを目的としており、...
[51CTO.comより引用] 2017年7月21日から22日まで、51CTO主催の人工知能をテーマ...
ボストンのロボット犬はしばらく前から販売されているが、価格は少々魅力的ではない。インターネット上には...
[[357471]]このほど、全人類に利益をもたらす科学技術の進歩を促進することに尽力している世界最...
手術室で外科医をサポートするロボットや、X 線や MRI 画像の評価を支援するソフトウェアが登場して...
Googleは10月13日、今週の木曜日からGoogleの「Search Generative E...
生成モデルは画像生成の分野で大きな成功を収めてきましたが、この技術を 3D 分野に拡張するには常に多...
(北京、2018 年 4 月 17 日) 本日、異種コンピューティング加速の総合的なソリューションの...