10x Nvidia GPU: Google TPUスタートアップチームによる、モデル固有の大型チップが一夜にして有名に

10x Nvidia GPU: Google TPUスタートアップチームによる、モデル固有の大型チップが一夜にして有名に

モデルが GPT-3.5 のように数千億の規模に達すると、トレーニングと推論のための計算能力は一般的なスタートアップ企業には手が届かず、人々はそれを利用するのが非常に遅くなることが分かっています。

しかし、今週の時点で、その考えは過去のものとなった。

Groqというスタートアップ企業は、大規模な言語モデルタスクでGPUを上回るという機械学習プロセッサを開発した。NvidiaのGPUより10倍高速で、コストは10%、消費電力はわずか10分の1だ。

Groq 上で実行されている Llama 2 の速度は次のとおりです。

出典: https://twitter.com/emollick/status/1759633391098732967

Groq (Llama 2) と ChatGPT が同じプロンプトに直面したときの動作は次のとおりです。

画像ソース: https://x.com/JayScambler/status/1759372542530261154?s=20

信じられないかもしれませんが、これは事実です。興味のある方はぜひ試してみてください。

現在、Groq の公式 Web サイトでは、以下のモデルの試用版を提供しています。

公式サイトアドレス:https://groq.com/

Groq のプロセッサは LPU (Language Processing Unit) と呼ばれ、シーケンシャル コンポーネント (LLM など) を備えた計算集約型アプリケーションに極めて高速な推論速度を提供できる、新しいタイプのエンドツーエンドの処理ユニット システムです。

駆動する大規模モデルの速度は、前例のない 500 トークン/秒に達し、極めて低いレイテンシを実現します。

ハードウェアを使用してソフトウェアを高速化すると、常に大きなパワーと空飛ぶレンガのような感覚が人々に与えられます。 Groq は、最先端のオープンソース モデル Mixtral も LPU 上で実行しており、数百語を含む事実に基づいた参照付きの回答を 1 秒未満で返します (時間の 4 分の 3 は検索に費やされています)。

Groq が公開したデモ ビデオで、誰かが次のようにコメントしました。「これは速すぎます。こんなに速いはずはありません。」

そのため、一部のネットユーザーは、大きなモデルはコンテンツを生成する速度が速すぎるため、ユーザーエクスペリエンスの観点から、人間の目が追いつけないため、ページを自動的にめくるのはやめるべきだ、という提案をした。

おそらく、LPU のサポートにより、生成 AI は 2 年以内に検索エンジンに大きな脅威を与えることになるでしょう。これは Gartner が最近予測したとおりです。よく考えてみると、それは確かに合理的です。結局のところ、ニューラル ネットワークは GPU の計算能力の発達によって注目されるようになったのです。

なぜそんなに速いのでしょうか?

GPU は数百のコアによる並列処理用に設計されており、主にグラフィック レンダリングに使用されますが、LPU のアーキテクチャは AI コンピューティングに確定的なパフォーマンスを提供するように設計されていると分析する人もいます。

LPU のアーキテクチャは、GPU で使用される SIMD (単一命令、複数データ) モデルとは異なり、複雑なスケジューリング ハードウェアを必要としない、より合理化されたアプローチを採用しています。この設計により、すべてのクロック サイクルを効率的に利用でき、一貫したレイテンシとスループットが保証されます。

エネルギー効率は、GPU に対する LPU のもう一つの注目すべき利点です。複数のスレッドの管理に関連するオーバーヘッドを削減し、コアの未使用を回避することで、LPU はワットあたりの計算能力を高め、より環境に優しい代替手段として位置付けられます。

Groq のチップ設計により、GPU クラスターに見られる従来のボトルネックなしに複数の TSP を接続できるため、非常にスケーラブルになります。これにより、LPU が追加されるにつれてパフォーマンスが線形に拡張され、大規模 AI モデルのハードウェア要件が簡素化され、開発者はシステムの再設計を行わずにアプリケーションを簡単に拡張できるようになります。

A100 や H100 が比較的不足している時代に、LPU は大規模モデルの開発者にとって新たな選択肢となるかもしれません。

Groqは2016年に設立されました。同社の創設チームはGoogle出身で、かつてはGoogleが自社開発したAIチップのテンソルプロセッシングユニットTPUシリーズを設計していました。公式サイトによると、Groq の創設者兼 CEO である Jonathan Ross 氏は、かつて TPU の作業の 20% を担当していたそうです。

ジョナサン・ロス。

昨年の高性能コンピューティング カンファレンス SC23 で、Groq は LPU 上で LLM を実行することで世界最高の低レイテンシ パフォーマンスを実証しました。当時、Groq は 1 秒あたり 280 トークンを超える速度で応答を生成することができ、Llama-2 70B 推論のパフォーマンス記録を更新しました。

Groq は今年 1 月に初めて公開ベンチマークに参加し、Anyscale の LLMPerf リーダーボードで他のクラウドベースの推論プロバイダーをはるかに上回る優れた結果を達成しました。

画像ソース: https://github.com/ray-project/llmperf-leaderboard?tab=readme-ov-file

人工知能はテクノロジーの世界に旋風を巻き起こしました。 2023 年は世界が AI が現実のものとなることを認識する年になるかもしれません。そして 2024 年は AI が単なる仮説ではなく現実のものとなる年になるでしょう。これはジョナサン・ロスがかつて指摘した点です。

100 万トークンのコンテキストを備えた Gemini Pro 1.5、1 秒あたり 500 トークンの推論速度を備えた Groq、さらに優れた推論機能を備えた GPT-5 があるのに、夢はまだ遠いのでしょうか?

<<:  大規模モデル向けの最速推論チップが一夜にして手に入りました。1秒あたり500トークンで、GPUを上回ります。 Google TPUチームがそれを構築し、ウルトラマンに叫ぶ: あなたは遅すぎる

>>:  さらに混沌です!ソラになりすました実在の人物の動画がすでに存在し、ウィル・スミスがパスタを食べながらミームを演じる

ブログ    

推薦する

...

...

第12回TOP100グローバルソフトウェアケーススタディサミットが北京で開催されました。

デジタル化とインテリジェンスの融合によってもたらされた競争の時代において、企業はサイクルを安全に乗り...

...

機械学習は創造的な仕事に役立つ

【51CTO.com クイック翻訳】 [[397384]] [序文]直感に反するように聞こえるかもし...

さまざまなオフィスAIを集めて活用すれば、最も効率的な人材になれる

人工知能(AI)技術の急速な発展は、さまざまな分野に多くの革新と利便性をもたらしました。この記事では...

競争が激化する中、ドローン配達の時代はいつ来るのでしょうか?

現在、電子商取引の発展が継続的に加速する中、物流と配送のプレッシャーは高まり続けており、ドローンは業...

AIoT: IoTと人工知能の完璧な組み合わせ

産業用 IoT を企業の神経系と考えてください。これは、生産工場のあらゆる場所から貴重な情報を収集し...

...

スマートコミュニティはどれくらい「スマート」なのでしょうか?知能の背後にある技術的応用を解釈する

モノのインターネット技術の発展と普及に伴い、WIFi、GPRS、LoRaWANなどの通信プロトコルが...

2020年以降のAIとデータのトレンド

2019 年は、データ、分析、機械学習、人工知能の市場において継続的な発展が見られた年でした。 Sa...

ニューラルネットワークの過剰適合を避ける 5 つのテクニック

この記事では、ニューラル ネットワークをトレーニングするときに過剰適合を回避する 5 つの手法を紹介...

高所から物が投げ出される悲劇が多発。AI監視システム「私があなたを守ります」

近年、高所から物が投げられたり落下したりして負傷する事故が多発しています。水のボトル、スイカの皮、缶...

注目すべき新たな AI 統計とトレンド

『2001年宇宙の旅』のHAL 9000の恐ろしい宣言から『ターミネーター』映画における終末的な機械...