2 ステップで 25 フレームの高品質アニメーションを生成 (SVD の 8% として計算) | オンラインでプレイ可能

2 ステップで 25 フレームの高品質アニメーションを生成 (SVD の 8% として計算) | オンラインでプレイ可能

消費されるコンピューティング リソースは、従来の Stable Video Diffusion (SVD)モデルのわずか2/25です。

時間がかかり、多くの計算を必要とするビデオ拡散モデルの繰り返しノイズ除去の問題を解決するAnimateLCM-SVD-xtがリリースされました。

まず、生成されたアニメーション効果の波を見てみましょう。

サイバーパンク スタイルは簡単にマスターでき、少年はヘッドフォンを着けてネオンに照らされた街の通りに立っています。

写真

リアルなスタイルもOKです。新婚カップルが寄り添い合い、繊細な花束を持ち、古代の石垣の下で愛を誓っています。

写真

SF スタイルは、エイリアンが地球を侵略しているかのような錯覚も与えます。

写真

AnimateLCM-SVD-xt は、香港中文大学の MMLab、Avolution AI、上海人工知能研究所、SenseTime Research Institute の研究者によって共同で提案されました。

写真

2~8ステップで、解像度576x1024、25フレームの高品質アニメーションを生成できます。分類器のガイドなしで、4ステップで生成されたビデオは高い忠実度を実現でき、従来のSVDよりも高速で効率的です。

写真

現在、AnimateLCM コードはオープンソース化されつつあり、試用可能なオンライン デモが用意されています。

デモを始める

デモ インターフェイスでわかるように、AnimateLCM には現在 3 つのバージョンがあります。AnimateLCM-SVD-xt は一般的な画像からビデオへの生成用、AnimateLCM-t2v はパーソナライズされたテキストからビデオへの生成用、AnimateLCM-i2v はパーソナライズされた画像からビデオへの生成用です。

写真

以下は、基本的な Dreambooth モデルまたは LoRA モデルを選択し、スライダーを使用して LoRA アルファ値を調整できる構成領域です。

写真

次に、生成されるアニメーションの内容と品質をガイドするためのプロンプトと否定プロンプトを入力できます。

写真

調整可能なパラメータもいくつかあります。

写真

試してみたところ、プロンプトワードは「空の雲」、パラメータは上記のように設定され、サンプリングステップは 4 ステップのみでしたが、生成された効果は次のようになりました。

写真

サンプリングステップが 25 ステップで、プロンプトワードが「ウサギを抱いている少年」の場合、効果は次のようになります。

写真

公式のデモ効果を見てみましょう。 2ステップ、4ステップ、8ステップの効果の比較は次のとおりです。

写真

ステップ数が多いほど、アニメーションの品質は向上します。AnimateLCM は、わずか 4 つのステップで高い忠実度を実現できます。

写真

さまざまなスタイルを実現できます:

写真

写真

これはどうやって行うのですか?

ビデオ拡散モデルは、一貫性のある高忠実度のビデオを生成できるため、ますます注目を集めていますが、反復的なノイズ除去プロセスは時間がかかるだけでなく、計算量も大きいため、その適用範囲が制限されるという難点があります。

AnimateLCM の研究では、研究者は一貫性モデル(CM)に着想を得て、事前トレーニング済みの画像拡散モデルを簡素化してサンプリングに必要な手順を減らし、条件付き画像生成における潜在的一貫性モデル(LCM)の拡張に成功しました。

写真

具体的には、研究者らは分離一貫性学習戦略を提案した。

まず、安定した拡散モデルを高品質の画像テキスト データセット上の画像一貫性モデルに蒸留し、次にビデオ データに対して一貫性蒸留を実行してビデオ一貫性モデルを取得します。この戦略は、空間レベルと時間レベルで個別にトレーニングすることでトレーニング効率を向上させます。

写真

さらに、安定拡散コミュニティにおけるプラグアンドプレイアダプタのさまざまな機能(例えば、ControlNetによる制御可能な生成)を実装するために、研究者らは、既存の制御アダプタを一貫性モデルとより一貫性のあるものにし、より制御可能なビデオ生成を実現する教師なし適応戦略を提案しました。

写真

定量的および定性的な実験の両方で、この方法の有効性が実証されています。

UCF-101 データセットのゼロショット テキストからビデオへの生成タスクでは、AnimateLCM は FVD と CLIPSIM の両方のメトリックで最高のパフォーマンスを達成しました。

写真

写真

アブレーション研究では、分離された一貫性学習と特定の初期化戦略の有効性が検証されています。

写真

プロジェクトリンク:
[1] https://animatelcm.github.io/

[2] https://huggingface.co/wangfuyun/AnimateLCM-SVD-xt

<<: 

>>:  10,000台以上のカメラが他人の家に接続されています。ネットワーク障害により中断と再起動が発生し、公式の責任はサードパーティのキャッシュライブラリに帰せられました。

ブログ    

推薦する

2枚の写真から動画が作れます! Googleが提案したFLIMフレーム補間モデル

フレーム補間は、コンピューター ビジョンの分野における重要なタスクです。モデルは、指定された 2 つ...

AI Coreの「正体」を1つの記事で理解する

[[251095]] 2018年の初めから年末にかけて、携帯電話業界では人工知能がキーワードとなって...

人工知能とサイバーセキュリティは諸刃の剣

[[379153]] [51CTO.com クイック翻訳] 研究によると、人工知能技術はさまざまな業...

「人工知能+教育」は教育の矛盾を解決するために、より包括的な方向に向かっている

「教育はデジタル化とネットワーク化からインテリジェンスへと変化しています。現在、人工知能はよりインテ...

...

アルゴリズムは偏っているか?他の人よりも優れていればいいのです!

[[241158]]ビッグデータダイジェスト制作編集者: Ni Ni、Chen Tongxue、A...

自動運転のための多視点視覚認識の理解

出力次元の観点から、視覚センサーに基づく知覚方法は、2D知覚と3D知覚に分けられます。視覚システムは...

「量子超越性」の後、GoogleはTensorFlowの量子バージョンを強力にオープンソース化

Googleは2019年10月に「量子超越性」の検証に関する論文をNatureに掲載した後、3月9日...

偏見と不平等にノーと言いましょう!マイクロソフト、物議を醸していた顔認識サービスの提供を停止

マイクロソフトは、動画や画像に基づいて感情を識別するサービスを含む、人工知能を活用した顔認識ツールの...

DrivingGaussian: リアルなサラウンドビューデータ、運転シーンの再構成SOTA

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

...